Skip to main content
Log in

Influence of flow swirling on the aerothermodynamic behaviour of flames

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The present work focuses on the numerical simulation of diffusive flames in a confined high-swirl burner. Navier–Stokes equations expressed for a time-dependent, compressible, and three-dimensional flow with finite-rate kinetics are solved for lean methane/air mixtures. A simplified mechanism is used to model the combustion. Non-reactive and reactive cases are contrasted for a swirl number of 0.95. Three flames for swirl numbers of 0, 0.6, and 0.95 are analyzed. In swirling flows, the inner recirculation zone is mainly composed of reaction products, which help in ignition of the incoming fuel. Moreover, the forward stagnation point plays an important role, leading to an azimuthal deflection of the flame front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ishizuka, “Flame Propagation along a Vortex Axis,” Prog. Energy Combust. Sci. 28, 477–542 (2002).

    Article  Google Scholar 

  2. J. Chomiak, A. Gorczakowski, T. Parra, and J. Jarosinski, “Flame Kernel Growth in a Rotating Gas,” Combust. Sci. Technol. 180 (2), 391–399 (2008); DOI: 10.1080/00102200701740964.

    Article  Google Scholar 

  3. P. L. Therkelsen, J. E. Portillo, D. Littlejohn, S. M. Martin, and R. K. Cheng, “Self-Induced Unstable Behaviors of CH4 and H2/CH4 Flames in a Model Combustor with Low-Swirl Injector,” Combust. Flame 160, 307–321 (2013).

    Article  Google Scholar 

  4. D. A. Rotman and A. K. Oppenheim, “Aerothermodynamic Properties of Stretched Flames in Enclosures,” in Twenty-First Symp. on Combustion, 1986, pp. 1303–1312.

    Google Scholar 

  5. D. Dunn-Rankin, P. K. Barr, and R. F. Sawyer, “Numerical and Experimental Study of “Tulip” Flame Formation in a Closed Vessel,” in Twenty-First Symp. on Combustion, 1986, pp. 1291–1301.

    Google Scholar 

  6. A. Valera-Medina, N. Syred, and A. Griffiths, “Visualisation of Isothermal Large Coherent Structures in a Swirl Burner,” Combust. Flame 156, 1723–1734 (2009); DOI: 10.1016/j.combustflame.2009.06.014.

    Article  Google Scholar 

  7. A. Olivani, G. Solero, F. Cozzi, and A. Coghe, “Near Field Flow Structure of Isothermal Swirling Flows and Reacting Non-Premixed Swirling Flames,” Experim. Therm. Fluid Sci. 31, 427–436 (2007); DOI: 10.1016/j.expthermflusci.2006.05.003.

    Article  Google Scholar 

  8. N. Syred, A. Giles, J. Lewis, M. Abdulsada, A. Valera Medina, R. Marsh, P. J. Bowen, and A. J. Griffiths, “Effect of Inlet and Outlet Configurations on Blow-Off and Flashback with Premixed Combustion for Methane and a High Hydrogen Content Fuel in a Generic Swirl Burner,” Appl. Energy 116, 288–296 (2014); DOI: 10.1016/j.apenergy.2013.11.071.

    Article  Google Scholar 

  9. K. Khanafer and S. M. Aithal, “Fluid-Dynamic and NOx Computation in Swirl Burners,” Int. J. Heat Mass Transfer 54, 5030–5038 (2011); DOI: 10.1016/j.ijheatmasstransfer.2011.07.017.

    Article  MATH  Google Scholar 

  10. R. Roback and B. V. Johnson, “Mass and Momentum Turbulent Transport Experiments with Confined Swirling Coaxial Jets,” NASA CR-168252 (1983).

    Google Scholar 

  11. M. T. Parra-Santos, F. Castro-Ruiz, and C. Mendez-Bueno, “Numerical Simulation of the Deflagration to Detonation Transition,” Fiz. Goreniya Vzryva 41 (2), 108–115 (2005)

    Google Scholar 

  12. M. T. Parra-Santos, F. Castro-Ruiz, and C. Mendez-Bueno, Combust., Expl., Shock Waves 41 (2), 215–222 (2005).

    Article  Google Scholar 

  13. R. G. Schmitt, P. B. Butler, and N. French, “Chemkin Real Gas: A Fortran Package for the Analysis of Thermodynamics and Chemical Kinetics in High Pressure Systems,” Univ. Iowa Rep. No. UIME-PBB 93-006 (1993).

    Google Scholar 

  14. P. M. Congedo, C. Dupra, G. Balarac, and C. Corre, “Numerical Prediction of Turbulent Flows using Reynolds-Averaged Navier–Stokes and Large-Eddy Simulation with Uncertain Inflow Conditions,” Int. J. Numer. Methods Fluids 72, 341–358 (2013); DOI: 10.1002/fld.3743.

    Article  ADS  Google Scholar 

  15. K. K. J. Ranga Dinesh, M. P. Kirkpatrick, and K. W. Jenkins, “Investigation of the Influence of Swirl on a Confined Coannular Swirl Jet,” Computers Fluids 39, 756–767 (2010).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Parra-Santos.

Additional information

Original Russian Text © M.T. Parra-Santos, V. Mendoza-Garcia, R. Szasz, A.N. Gutkowski, and F. Castro-Ruiz.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 4, pp. 29–36, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Santos, M.T., Mendoza-Garcia, V., Szasz, R. et al. Influence of flow swirling on the aerothermodynamic behaviour of flames. Combust Explos Shock Waves 51, 424–430 (2015). https://doi.org/10.1134/S0010508215040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215040048

Keywords

Navigation