Skip to main content
Log in

Molecular dynamics simulation of combustion front propagation in a PETN single crystal

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The propagation velocity of the combustion front in PETN was calculated. The kinetics of the chemical reactions occurring during propagation of combustion and dependences of the burning rate on the direction in the crystal and external pressure are discussed. The pressure dependence is linear in the pressure range of up to 30 GPa. The results are compared with experimental data and ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and A. S. Kompaneets, Detonation Theory (Gostekhizdat, Moscow, 1955; Academic Press, New York, 1960).

    Google Scholar 

  2. E. L. Lee and C. M. Tarver, “Phenomenological Model of Shock Initiation in Heterogeneous Explosives,” Phys. Fluids 23, 2362 (1980).

    Article  ADS  Google Scholar 

  3. R. Menikoff and M. S. Shaw, “Reactive Burn Models and Ignition and Growth Concept,” EPJ Web of Conf. 10, 3 (2010).

    Article  Google Scholar 

  4. R. Menikoff, “Deflagration Wave Profiles,” Report (Los Alamos National Laboratory, 2012).

    Book  Google Scholar 

  5. G. I. Kanel, S. V. Razorenov, S. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Matter (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  6. Ya. B. Zel’dovich, “On the Theory of Combustion of Gunpowder and Explosives,” Zh. Eksp. Teor. Fiz. 12, 498 (1942).

    Google Scholar 

  7. K. K. Andreev, Thermal Decomposition and Combustion of Explosives (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  8. Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  9. A. P. Esposito, L. Farber, J. E. Reaugh, and J. M. Zaug, “Reaction Propagation Rates in HMX at High Pressure,” Propel., Explos., Pyrotech. 28(2), 83 (2003).

    Article  Google Scholar 

  10. J. M. Zaug, C. E. Young, G. T. Long, J. L. Maienschein, E. A. Glascoe, D. W. Hansen, J. F. Wardell, C. K. Black, and G. B. Sykora, “Deflagration Rates of Secondary Explosives under Static MPa-GPa Pressure,” Report (Lawrence Livermore National Laboratory, 2009).

    Google Scholar 

  11. J. M. Zaug, M. F. Foltz, and E. Hart, “Deflagration Rates and Molecular Bonding Trends of Statically Compressed Secondary Explosives,” Report (Lawrence Livermore National Laboratory, 2010).

    Google Scholar 

  12. H. V. Brand, “Ab Initio All-Electron Periodic Hartree-Fock Study of Hydrostatic Compression of Pentaerythritol Tetranitrate,” J. Phys. Chem. B 109, 13668–13675 (2005).

    Article  Google Scholar 

  13. E. F. C. Byrd and B. M. Rice, “Ab Initio Study of Compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and Pentaerythritol Tetranitrate (PETN),” J. Phys. Chem. C 111, 2787–2796 (2007).

    Article  Google Scholar 

  14. C. J. Wu, F. H. Ree, and C.-S. Yoo, “A Quantum Mechanical Molecular Dynamics Study of Binary Collisions of Pentaerythritol Tetranitrate (PETN): Its Correlation to Shock Sensitivity,” Propel., Explos., Pyrotech. 29(5), 296–303 (2004).

    Article  Google Scholar 

  15. A. C. Landerville, I. I. Oleynik, and C. T. White, “Reactive Molecular Dynamics of Hypervelocity Collisions of PETN Molecules,” J. Phys. Chem. A 113 12094–12104 (2009).

    Article  Google Scholar 

  16. O. Sharia and M. M. Kuklja, “Surface-Enhanced Decomposition Kinetics of Molecular Materials Illustrated with Cyclotetramethylene-tetranitramine,” J. Phys. Chem. C 116, 11077–11081 (2012).

    Article  Google Scholar 

  17. M. Am-Shallem, Y. Zeiri, S. V. Zybin, and R. Kosloff, “Molecular Dynamics Simulations of Weak Detonations,” Phys. Rev. E 84, 061122 (2011).

    Article  ADS  Google Scholar 

  18. A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard III, “ReaxFF: A Reactive Force Field for Hydrocarbons,” J. Phys. Chem. A 105(41), 9396–9409 (2001).

    Article  Google Scholar 

  19. A. Strachan, A. C. T. van Duin, D. Chakraborty, et al., “Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX,” Phys. Rev. Lett. 91(9), 098301 (2003).

    Article  ADS  Google Scholar 

  20. A. Strachan, E. M. Kober, A. C. T. van Duin, et al. “Thermal Decomposition of RDX from Reactive Molecular Dynamics,” J. Chem. Phys. 122(5), 054502 (2005).

    Article  ADS  Google Scholar 

  21. K. Nomura, R. K. Kalia, A. Nakano, et al., “Dynamic Transition in the Structure of an Energetic Crystal During Chemical Reactions at Shock Front Prior to Detonation,” Phys. Rev. E 99 148303 (2007).

    Google Scholar 

  22. S. V. Zybin, W. A. Goddard III, P. Xu, et al., “Physical Mechanism of Anisotropic Sensitivity in Pentaerythritol Tetranitrate from Compressive-Shear Reaction Dynamics Simulations,” Appl. Phys. Lett. 96, 081918 (2010).

    Article  ADS  Google Scholar 

  23. Q. An, S. V. Zybin, W. A. Goddard III, et al., “Elucidation of the Dynamics for Hot-Spot Initiation at Nonuniform Interfaces of Highly Shocked Materials,” Phys. Rev. B 84, 220101 (2007).

    Article  Google Scholar 

  24. C. J. Wu, M. R. Manaa, L. E. Fried, “A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions, Report (Lawrence Livermore National Laboratory, 2006).

    Book  Google Scholar 

  25. V. I. Pepekin and S. A. Gubin, “Propellant Performance of Organic Explosives and Their Energy Output and Detonation Velocity Limits,” Fiz. Goreniya Vzryva 43(1), 99–0111 (2007) [Combust., Expl., Shock Waves 43 (1), 84–95 (2007)].

    Google Scholar 

  26. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys. 117, 1–19 (1995).

    Article  ADS  MATH  Google Scholar 

  27. H. Aktulga, J. Fogarty, S. Pandit, and A. Grama, “Parallel Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques,” Parallel Comp. 38(4/5), 245–259 (2012).

    Article  Google Scholar 

  28. J. Budzien, A. P. Thompson, and S. V. Zybin, “Reactive Molecular Dynamics Simulations of Shock Through a Single Crystal of Pentaerythritol Tetranitrate,” J. Phys. Chem. B 113(40), 13142–13151 (2009).

    Article  Google Scholar 

  29. A. P. Thompson, S. J. Plimpton, and W. Mattson, “General Formulation of Pressure and Stress Tensor for Arbitrary Many-Body Interaction Potentials under Periodic Boundary Conditions,” J. Chem. Phys. 131(15), 154107 (2009).

    Article  ADS  Google Scholar 

  30. E. A. Zhurova, A. I. Stash, V. G. Tsirelson, et al., “Atoms-in-Molecules Study of Intra- and Intermolecular Bonding in the Pentaerythritol Tetranitrate Crystal,” J. Amer. Chem. Soc 128(45), 14728–14734 (2006).

    Article  Google Scholar 

  31. A. V. Fedorov, A. L. Mikhailov, L. K. Antonyuk, D. V. Nazarov, and S. A. Finyushin, “Determination of Parameters of Detonation Waves in of PETN and HMX Single Crystals, Fiz. Goreniya Vzryva 47(5), 117–122 (2011) [Combust., Expl., Shock Waves 47 (5), 601–605 (2011)].

    Google Scholar 

  32. “Pressure Dependence on the Reaction Propagation Rate of PETN at High Pressure,” Report (Lawrence Livermore National Laboratory, 1993).

  33. K. F. Grebenkin, A. L. Zherebtsov, A. L. Kutepov, and V. V. Popova, “On the Possibility of Experimental Verification of the Semiconductor Model of Detonation,” Zh. Tekh. Fiz. 72(11), 114–116 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sergeev.

Additional information

Original Russian Text © O.V. Sergeev, A.V. Yanilkin.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 3, pp. 87–97, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, O.V., Yanilkin, A.V. Molecular dynamics simulation of combustion front propagation in a PETN single crystal. Combust Explos Shock Waves 50, 323–332 (2014). https://doi.org/10.1134/S0010508214030101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214030101

Keywords

Navigation