Skip to main content
Log in

Simulation of Combustion of Solid High-Energy Materials with Account for Erosive Effects

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A negative erosive effect arises in the simulation of combustion due to a generated turbulent motion in the gasification zone of a solid energy material. A thermal energy in the gasification zone comprises the heat of chemical sources in it and the heat coming up to the gasification surface from the flame zone in a gaseous phase. Some of this energy returns to the gaseous phase in the form of the mechanical energy of turbulent motion, and this turbulence cools down the gasification zone. This model is used to explain the weakening of the negative erosive effect, observed in the experiments, with increasing pressure and decreasing initial temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Leipunskii, Physical Fundamentals of Internal Ballistics of Rocket Projectiles (Semenov Inst. of Chem. Phys., Russian Acad, of Sci., Moscow, 1945) [in Russian].

    Google Scholar 

  2. K. O. Sabdenov, “On the Threshold Nature of Erosive Burning,” Fiz. Goreniya Vzryva 44 (3), 127–132 (2008) [Combust., Expl, Shock Waves 44 (3), 300–309 (2008)].

    Google Scholar 

  3. V. N. Vilyunov and A. A. Dvoryashin “An Experimental Investigation of the Erosive Burning Effect,” Fiz. Goreniya Vzryva 7 (1), 45–51 (1971) [Combust., Expl., Shock Waves 7 (1), 38–42 (1971)].

    Google Scholar 

  4. V. N. Vilyunov and A. A. Dvoryashin ⌈Effect of the Initial Temperature of a Condensed Substance on the Value of the Negative Erosion,” Fiz. Goreniya Vzryva 9 (4), 602 (1973) [Combust., Expl, Shock Waves 9 (4), 521–522 (1973)].

    Google Scholar 

  5. Richard Nakka’s Experimental Rocketry Web Site, http://www.nakka-rocketry.net/burnrate.html.

  6. N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion (Wiley-VCH Verlag GmbH, Wainheim, 2007).

    Google Scholar 

  7. K. O. Sabdenov and M. Erzada, “Mechanism of the Negative Erosion Effect,” Fiz. Goreniya Vzryva 49 (3), 22–33 (2013) [Combust., Expl., Shock Waves 49 (3), 273–282 (2013)].

    Google Scholar 

  8. K. O. Sabdenov and M. Erzada, “Mechanism of the Negative Erosion Effect,” Fiz. Goreniya Vzryva 49 (6), 76–86 (2013) [Combust., Expl., Shock Waves 49 (6), 690–699 (2013)].

    Google Scholar 

  9. K. O. Sabdenov and M. Erzada, “Negative Erosion Effect and the Emergence of Unstable Combustion. 1. Analysis of the Models,” Fiz. Goreniya Vzryva 52 (1), 76–83 (2016) [Combust., Expl., Shock Waves 52 (1), 67–73 (2016)].

    Google Scholar 

  10. authK. O. Sabdenov and M. Erzada, “Negative Erosion Effect and the Emergence of Unstable Combustion. 2. Numerical Simulation,” Fiz. Goreniya Vzryva 52 (2), 76–87 (2016) [Combust., Expl., Shock Waves 52 (2), 193–202 (2016)].

    Google Scholar 

  11. V. A. Arkhipov, D. A. Zimin, E. A. Kozlov, and N. S. Tret’yakov, “Experimental Study of Erosive Burning of Solid Propellants,” Khim. Fiz. 16 (9), 101–106 (1997).

    Google Scholar 

  12. V. A. Arkhipov and D. A. Zimin, “Erosive Burning of a Solid Propellant in a Supersonic Flow,” Fiz. Goreniya Vzryva 34 (1), 61–64 (1998) [Combust., Expl., Shock Waves 34 (1), 55–57 (1998)].

    Google Scholar 

  13. S. Krishnan and K. K. Rajesh, “Erosive Burning Rate Studies of Composite Propellants Under High Cross Flow Velocities,” AIAA-98-3384; http://arc.aiaa.org; DOI.10.2514/6.1998-3384.

  14. G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Gidrometeoizdat, Leningrad, 1982; Cambridge Univ. Press, Cambridge, 1996).

    MATH  Google Scholar 

  15. Y. M. Timnat, Advanced Chemical Rocket Propulsion (Academic Press, London, 1987).

    Google Scholar 

  16. L. K. Gusachenko and V. E. Zarko “Combustion Models for Energetic Materials with Completely Gaseous Reaction Products,” Fiz. Goreniya Vzryva 41 (1), 24–40 (2005) [Combust., Expl., Shock Waves 41 (1), 20–34 (2005)].

    Google Scholar 

  17. V. K. Bulgakov and A. M. Lipanov, “Combustion of Condensed Material with Blowing,” Fiz. Goreniya Vzryva 19 (3), 32–41 (1983) [Combust., Expl., Shock Waves 19 (3), 279–287 (1983)].

    Google Scholar 

  18. V. K. Bulgakov and A. M. Lipanov “Model of the Combustion of Solid Fuel with Blow-Off, Taking Account of the Interaction of Turbulence with the Chemical Reaction,” Fiz. Goreniya Vzryva 20 (5), 68–74 (1984) [Combust., Expl., Shock Waves 20 (5), 538–542 (1984)].

    Google Scholar 

  19. V. K. Bulgakov, A. M. Lipanov, and A. Sh. Kamaletdinov, “Numerical Studies of the Erosional Combustion of Condensed Matter,” Fiz. Goreniya Vzryva 22 (6), 83–88 (1986) [Combust., Expl, Shock Waves 22 (6), 717–721 (1986)].

    Google Scholar 

  20. D. R. Greatrix, “Model for Prediction of Negative and Positive Erosive Burning,” Canadian Aeronaut. Space J. 53 (1), 13–21 (2007).

    Article  ADS  Google Scholar 

  21. L. K. Gusachenko and V. E. Zarko “Erosive Burning. Modeling Problems,” Fiz. Goreniya Vzryva 43 (3), 47–58 (2007) [Combust., Expl, Shock Waves 43 (3), 286–296 (2007)].

    Google Scholar 

  22. A. H. G. Isfahani, Ju Zhang, and T. L. Jackson, “Erosive Burning of Homogeneous and Heterogeneous Solid Propellants,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Denver, August 2-5, 2009; https://doi.org/10.2514/6.2009-5498.

  23. Ju Zhang and T. L. Jackson, “A Model for Erosive Burning of Homogeneous Propellants,” Combust. Flame 157, 397–407 (2010).

    Article  Google Scholar 

  24. T. L. Jackson, “Issues Related to Heterogeneous Solid-Propellant Combustion,” Prog. Propul. Phys., No. 2, 3–20 (2011).

    Google Scholar 

  25. V. D. Topalian, J. Zhang, T. L. Jackson, and A. H. G. Isfahani, “Numerical Study of Erosive Burning in Multidimensional Solid Propellant Modeling,” J. Propul. Power. 27 (4), 811–821 (2011).

    Article  Google Scholar 

  26. D. R. Greatrix, “Influence of Initial Propellant Temperature on Solid Rocket Internal Ballistics,” J. Propul. Power. 30 (4), 869–875 (2014).

    Article  Google Scholar 

  27. V. Ya. Zyryanov, V. M. Bolvanenko, O. G. Glotov, and Yu. M. Gurenko “Turbulent Model for the Combustion of a Solid Fuel Composite,” Fiz. Goreniya Vzryva 24 (6), 17–26 (1988) [Combust., Expl., Shock Waves 24 (6), 652–660 (1988)].

    Google Scholar 

  28. G. H. Markstein, Nonsteady Flame Propagation (Pergamon Press, 1964).

    Google Scholar 

  29. H. Schlichting, Boundary Layer Theory (Pergamon Press, 1955).

    MATH  Google Scholar 

  30. A. M. Klimov, “Flame Propagation in Strong Turbulence,” Dokl. Akad. Nauk SSSR 221 (1), 56–59 (1975).

    Google Scholar 

  31. V. R. Kuznetsov and V. A. Sabel’nikov, Turbulence and Combustion (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  32. K. O. Sabdenov, “Generation of Hydrodynamic Instability in the Gasification Region of Propellant,” Fiz. Goreniya Vzryva 52 (6), 70–82 (2016) [Combust., Expl., Shock Waves 52 (6), 683–693 (2016)].

    Google Scholar 

  33. L. D. Landau, “On the Theory of Slow Combustion,” in Collected Papers of L.D. Landau (Pergamon, 1965).

    Google Scholar 

  34. K. O. Sabdenov and M. Erzada, “Determination of the Transfer Coefficients of Natural Turbulence Occurring near the Solid-Propellant Gasification Zone. II. Hydro-dynamic Instability in the Presence of Cross-Flow,” Fiz. Goreniya Vzryva 53 (6), 26–37 (2017) [Combust., Expl, Shock Waves 53 (6), 641–651 (2017)].

    Google Scholar 

  35. K. O. Sabdenov and M. Erzada, “Anomalous Effect of Turbulence on the Burning Rate of Solid High-Energy Materials,” Khim. Fiz. 37 (10), 51–59 (2018).

    Google Scholar 

  36. K. O. Sabdenov and M. Erzada, “Determination of the Transfer Coefficient of Natural Turbulence Occurring near the Solid-Propellant Gasification Zone. I. Two-Phase Model of the Gasification Zone,” Fiz. Goreniya Vzryva 53 (5), 70–82 (2017) [Combust., Expl, Shock Waves 53 (5), 554–564 (2017)].

    Google Scholar 

  37. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Massachusetts Inst, of Technology, Cambridge, 1975), Vol. 2.

  38. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, 1959).

    Google Scholar 

  39. Handbook of Turbulence: Fundamentals and Applications Ed. by W. Frost and T. H. Moulden (Plenum Press, New York-London, 1977).

  40. F. A. Williams, Combustion Theory (Addison-Wesley, Reading, 1964).

    Google Scholar 

  41. M. R. Denison and E. A. Baum, “A Simplified Model of Unstable Burning in Solid Propellants,” ARS J. 31 1112–1122 (1961).

    Article  MATH  Google Scholar 

  42. K. O. Sabdenov and M. Erzada, “The Equation for Prandtls Mixing Length,” Frontiers Aerosp. Eng. 3 (2), 50–55 (2014).

    Article  Google Scholar 

  43. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  44. V. K. Bulgakov and A. M. Lipanov, “Combustion of Condensed Material with Blowing,” Fiz. Goreniya Vzryva 19 (3), 32–41 (1983) [Combust., Expl., Shock Waves 19 (3), 279–287 (1983)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Additional information

Original Russian Text © K.O. Sabdenov, M. Erzada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabdenov, K.O., Erzada, M. Simulation of Combustion of Solid High-Energy Materials with Account for Erosive Effects. Combust Explos Shock Waves 55, 156–166 (2019). https://doi.org/10.1134/S0010508219020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219020047

Keywords

Navigation