Skip to main content
Log in

Analytical calculation of the negative erosive burning rate

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The rate of negative erosive combustion is calculated using analytical methods and a simple model of the gas-phase chemical reactions A → B. The conversion of part of the thermal energy into the kinetic energy of motion of gaseous combustion products along the propellant gasification surface is taken into account within the model. Solutions are obtained for the cases where the thickness of the laminar sublayer is larger or smaller than the width of the combustion zone in the gas phase. The calculation results confirm the author’s previous conclusion: manifestation reduction in the negative erosive effect with decreasing initial temperature of the propellant is caused by narrowing of the region of its occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Alemasov, A. F. Dregalin, and A. P. Tishin, The Theory of Rocket Motors (Mashinostroenie, Moscow, 1969) [in Russian].

    Google Scholar 

  2. B. V. Orlov and G. Yu. Mazing, Thermodynamics and Ballistic Fundamentals of Designing Solid Rocket Motors (Mashinostroenie, 1968) [in Russian].

    Google Scholar 

  3. V. K. Bulgakov and M. A. Lipanov, The Theory of Erosive Burning of Solid Propellants (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  4. K. A. Sabdenov, The theory of Unsteady Combustion of Solid Propellants (Izd. Tomsk. Gos. Univ., Tomsk, 2006).

    Google Scholar 

  5. H. S. Mukunda, “A Comprehensive Theory of Erosive Burning in Solid Rocket Propellants,” Combust. Sci. Technol. 18(3–4), 105–118 (1978).

    Article  Google Scholar 

  6. K. O. Sabdenov, “On the Threshold Nature of Erosive Burning,” Fiz. Goreniya Vzryva 44(3), 61–71 (2008) [Combust., Expl., ShockWaves 44 (3), 300–309 (2008)].

    Google Scholar 

  7. R. Nakka’s, Experimental Rocketry Web Site, http://www.nakka-rocketry.net/burnrate.html.

  8. K. O. Sabdenov and M. Erzada, “The Rate of Negative Erosive Burning of Solid Propellants,” Vest. Evraz. Nats. Univ. Gumileva, No. 4, 478–489 (2012).

    Google Scholar 

  9. V. K. Bulgakov, A. M. Lipanov, and A. Sh. Kamaletdinov, “Numerical Studies of the Erosional Combustion of Condensed Matter,” Fiz. Goreniya Vzryva 22(6), 83–88 (1986) [Combust., Expl., Shock Waves 22 (6), 717–721 (1986)].

    Google Scholar 

  10. V. K. Bulgakov and A. M. Lipanov, “Combustion of Condensed Material with Blowing,” Fiz. Goreniya Vzryva 19(3), 32–41 (1983) [Combust., Expl., Shock Waves 19 (3), 279–287 (1983)].

    Google Scholar 

  11. B. A. McDonald, The Development of an Erosive Burning Model for Solid Rocket Motors Using Direct Numerical Simulation (Georgia Inst. of Technology, 2004).

    Google Scholar 

  12. S. Krishnan and K. K. Rajesh, “Erosive Burning of Ammonium Perchlorate/Hydroxyl-Terminated-Polybutadiene Propellants under Supersonic Crossflows,” J. Propuls. Power 19(4), 623–631 (2003).

    Article  Google Scholar 

  13. D. R. Greatrix, “Scale Effects on Quasi-Steady Solid Rocket Internal Ballistic Behavior,” Energies No. 3, 1790–1804 (2011).

    Google Scholar 

  14. D. R. Greatrix, “Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors,” Int. J. Spray Combust. Dyn. 1(1), 143–168 (2009).

    Article  Google Scholar 

  15. D. R. Greatrix, “Model for Prediction of Negative and Positive Erosive Burning,” Can. Aeronaut. Space J. 53(1), 13–21 (2007).

    Article  ADS  Google Scholar 

  16. K. O. Sabdenov and Maira Erzada, “Mechanism of the Negative Erosion Effect,” Fiz. Goreniya Vzryva 49(3), 22–33 (2013) [Combust., Expl., Shock Waves 49 (3), 273–282 (2013)].

    Google Scholar 

  17. L. K. Gusachenko and V. E. Zarko, “Erosive Burning. Modeling Problems,” Fiz. Goreniya Vzryva 43(3), 47–58 (2007) [Combust., Expl., Shock Waves 43 (3), 286–296 (2007)].

    Google Scholar 

  18. V. N. Vilyunov and A. A. Dvoryashin, “Effect of the initial temperature of a condensed substance on the value of the negative erosion,” Fiz. Goreniya Vzryva 9(4), 602 (1973) [Combust., Expl., Shock Waves 9 (4), 521–522 (1973)].

    Google Scholar 

  19. M. A. Willcox, M. Q. Brewster, K. C. Tang, D. S. Stewart, and I. Kuznetzov, “Solid Rocket Motor Internal Ballistics Simulation Using Three-Dimensional Grain Burnback,” J. Propuls. Power 23(3), 575–584 (2007).

    Article  Google Scholar 

  20. K. Srinivasan, S. Narayanan, and O. P. Sharma, “Numerical Studies on Erosive Burning in Cylindrical Solid Propellant Grain,” Heat Mass Transfer 44, 579–585 (2008).

    Article  ADS  Google Scholar 

  21. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Pergamon Press, Oxford-New York, 1966).

    Google Scholar 

  22. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (Wiley, 1954).

    MATH  Google Scholar 

  23. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  24. Liquid and Solid Rocket Propellants, Ed. by Yu. Kh. Shaulov (Izd. Inostr. Lit., Moscow, 1959) [Russian translation].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Additional information

Original Russian Text © K.O. Sabdenov, M. Erzada.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 6, pp. 76–86, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabdenov, K.O., Erzada, M. Analytical calculation of the negative erosive burning rate. Combust Explos Shock Waves 49, 690–699 (2013). https://doi.org/10.1134/S0010508213060087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213060087

Keywords

Navigation