Skip to main content
Log in

Mathematical modeling of metallochemical reactions in a two-species reacting disperse mixture

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A heterogeneous model of gasless combustion of binary disperse systems is proposed. The model combines the description of microscale processes of interphase interaction in the cell of the mixture with the macroscale description, which allows physicochemical transformations to be described on the basis of the continuum approach of mechanics of continuous media and the phase composition of the final products to be calculated. Schemes of metallochemical reactions of formation and decomposition of intermetallic phases are proposed, based on an analysis of the state diagram of the Ni-Al system. A problem of SHS wave propagation and evolution of the spatial distribution of concentrations of intermetallic phases during combustion of a mixture of Ni and Al powders is solved numerically. A two-wave structure of the combustion wave is obtained, and comparisons with experimental data are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIA Handbook of Laser Materials Processing, Ed. by J. F. Ready and D. F. Farson (Laser Institute of America, 2001).

    Google Scholar 

  2. C. C. Kai and K. F. Leong, Rapid Prototyping: Principles and Applications in Manufacturing (John Wiley and Sons, New York, 1998).

    Google Scholar 

  3. A. G. Merzhanov, “Theory and Practice of SHS: Worldwide State of the Art and the Newest Results,” Int. J. of SHS 2(2), 113–158 (1993).

    Google Scholar 

  4. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Izd. Tomsk. Univ., Tomsk, 1989) [in Russian].

    Google Scholar 

  5. A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Species (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  6. A. Makino, O. Odawara, E. Miyamoto, et al., Chemistry of Synthesis through Combustion Ed. by M. Koidzumi (Mir, Moscow, 1998) [Russian translation].

  7. E. A. Nekrasov, Yu. M. Maksimov, and A. P. Aldushin, “Calculation of Critical Thermal Explosion Conditions in Hafnium-Boron and Tantalum-Carbon Systems Using State Diagrams,” Fiz. Goreniya Vzryva 16(3), 113–120 (1980) [Combust., Expl., Shock Waves 16 (3), 342–347 (1980)].

    Google Scholar 

  8. A. G. Gasparyan and A. S. Shteinberg, “Macrokinetics of Reaction and Thermal Explosion in Ni and Al Powder Mixtures,” Fiz. Goreniya Vzryva 24(3), 67–74 (1988) [Combust., Expl., Shock Waves 24 (3), 324–330 (1988)].

    Google Scholar 

  9. O. V. Lapshin and V. E. Ovcharenko, “A Mathematical Model of High-Temperature Synthesis of Nickel Aluminide Ni3Al by Thermal Shock of a Powder Mixture of Pure Elements,” Fiz. Goreniya Vzryva 32(3), 68–76 (1996) [Combust., Expl., Shock Waves 32 (3), 299–305 (1996)].

    Google Scholar 

  10. V. V. Evstigneev, V. Yu. Filimonov, and K. B. Koshelev, “Mathematical Model of Phase-Formation Processes in a Binary Mixture of Ti and Al Powders in the Regime of a Nonadiabatic Thermal Explosion,” Fiz. Goreniya Vzryva 43(2), 52–56 (2007) [Combust., Exp., Shock Waves 43 (2), 170–175 (2007)].

    Google Scholar 

  11. E. A. Nekrasov, Yu. Maksimov, and A. P. Aldushin, “Calculation of Combustion Wave Parameters in Gasless Systems,” Dokl. Ross. Akad. Nauk 255(3), 656–659 (1980).

    Google Scholar 

  12. V. K. Smolyakov, E. A. Nekrasov, and Yu. M. Maksimov, “Modeling Gas-Free Combustion with Phase Transitions,” Fiz. Goreniya Vzryva 20(2), 63–73 (1984) [Combust., Expl., Shock Waves 20 (2), 182–191 (1984)].

    Google Scholar 

  13. F. Baras and D. Kondepudi, “A Multilayer Model for Self-Propagation High-Temperature Synthesis of Intermetallic Compounds,” J. Phys. Chem. B 111, 6457–6468 (2007).

    Article  Google Scholar 

  14. S. Gennari, F. Maglia, U. Anselmi-Tamburini, et al., “Self-Propagating High-Temperature Synthesis of Intermetallic Compounds: A Computer Simulation Approach to Chemical Mechanism,” J. Phys. Chem. B 107, 732–738 (2003).

    Article  Google Scholar 

  15. A. Biswas, S. K. Roy, K. R. Gurumurthy, N. Prabhu, and S. Banerjee, “A Study of Self-Propagating High-Temperature Synthesis of NiAl in Thermal Explosion Mode,” Acta Mater. 50, 757–773 (2002).

    Article  Google Scholar 

  16. C. L. Yeh and W. Y. Sung, “Combustion Synthesis of Ni3Al Intermetallic Compound in Self-Propagating Mode,” J. Alloys Compounds 384, 181–191 (2004).

    Article  Google Scholar 

  17. A. E. Gershinskii, G. V. Timofeeva, and N. A. Shalygina, “Studies of the Interaction between Aluminium and Nickel, Chromium and Nichrome Alloy Films,” Thin Solid Films 162, 171–181 (1988).

    Article  ADS  Google Scholar 

  18. E. Ma, C. V. Thompson, and L. A. Clevenger, “Nucleation and Growth during Reactions in Multilayer Al/Ni Films: The Early stage of Al3Ni Formation,” J. Appl. Phys. 69, 2211–2218 (1991).

    Article  ADS  Google Scholar 

  19. P. Zhu, J. C. M. Li, and C. T. Liu, “Combustion Reaction in Multilayered Nickel and Aluminum Foils,” Mater. Sci. Eng. A 239–240, 532–539 (1997).

    Article  Google Scholar 

  20. L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino, “Solid State Reactions in Al/Ni Alternate Foils Induced by Cold Rolling and Annealing,” Acta Mater. 47(6), 1901–1914 (1999).

    Article  Google Scholar 

  21. C. Michaelsen and K. Barmak, “Calorimetric Determination of NiAl3-Growth Kinetics in Sputter-Deposited Ni/Al Diffusion Couples,” J. Alloys Compounds 257, 211–214 (1997).

    Article  Google Scholar 

  22. T. Ikeda, A. Almazouzi, H. Numakura, et al., “Single-Phase Interdiffusion in Ni3Al,” Acta Mater. 46(15), 5369–5376 (1998).

    Article  Google Scholar 

  23. O. B. Kovalev and V. A. Neronov, “Metallochemical Analysis of the Reaction in a Mixture of Nickel and Aluminum Powders,” Fiz. Goreniya Vzryva 40(2), 52–60 (2004) [Combust., Expl., Shock Waves 40 (2), 172–179 (2004)].

    Google Scholar 

  24. B. V. Novozhilov, “Spin Combustion,” Khim. Fiz. 15(4), 107–114 (1996).

    MathSciNet  Google Scholar 

  25. T. P. Ivleva and A. G. Merzhanov, “Mathematical Simulation of Three-Dimensional Spin Regimes of Gasless Combustion,” Fiz. Goreniya Vzryva 38(1), 47–54 (2002) [Combust., Expl., Shock Waves 38 (1), 41–48 (2002)].

    Google Scholar 

  26. T. P. Ivleva and A. G. Merzhanov, “Three-Dimensional Unsteady Solid Flame Combustion under Nonadiabatic Conditions,” Fiz. Goreniya Vzryva 39(3), 67–76 (2003) [Combust., Expl., Shock Waves 39 (3), 300–308 (2003)].

    Google Scholar 

  27. O. B. Kovalev and V. M. Fomin, “On the Theory of Interphase Interaction in a Mixture of Reacting Metal Particles,” Fiz. Goreniya Vzryva 38(6), 55–65 (2002) [Combust., Expl., Shock Waves 38 (6), 655–664 (2002)].

    Google Scholar 

  28. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski (ASM Int., Mater. Park, Ohio, 1990), Vol. 3, pp. 2859–2861.

    Google Scholar 

  29. G. V. Samsonov and I. M. Vinitskii, Refractory Compounds (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  30. B. B. Bokhonov and M. A. Korchagin, “In-Situ Investigation of the Formation of Nickel Silicides during Interaction of Single-Crystalline and Amorphous Silicon with Nickel,” J. Alloys Compounds 319, 187–195 (2001).

    Article  Google Scholar 

  31. B. Ya. Lyubov, Diffusion Processes in Heterogeneous Solids (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  32. B. I. Kvasov, Methods of Shape-Preserving Spline Approximation (World Scientific, Singapore-New Jersey-London-Hong Kong, 2000).

    Book  MATH  Google Scholar 

  33. M. I. Shilyaev, V. E. Borzykh, and A. R. Dorokhov, “Laser Ignition of Nickel-Aluminum Powder Systems,” Fiz. Goreniya Vzryva 30(2), 14–18 (1994) [Combust., Expl., Shock Waves 30 (2), 147–150 (1994)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Kovalev.

Additional information

Original Russian Text © O.B. Kovalev, V.V. Belyaev.

__________

Translated from Fizika Goreniya i Vzryva, Vol. 49, No. 5, pp. 64–76, September–October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalev, O.B., Belyaev, V.V. Mathematical modeling of metallochemical reactions in a two-species reacting disperse mixture. Combust Explos Shock Waves 49, 563–574 (2013). https://doi.org/10.1134/S0010508213050080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508213050080

Keywords

Navigation