Skip to main content
Log in

Semi-empirical model of the combustion wave in a gas suspension of magnesium particles

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A physicomathematical model within the framework of the approach of mechanics of reacting heterogeneous media is proposed to describe the combustion wave in a mixture of a gas and fine magnesium particles. The model is verified on the basis of dependences of the limiting temperature of ignition and combustion wave velocity on the radius and volume concentration of particles. It is guaranteed that the model is valid in the range of particle radii from 7.5 to 35 µm and in the range of volume concentrations of particles (1.2–2.4) · 10-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Gosteev and A. V. Fedorov, “Discrete–Continual Model of Flame Propagation in a Gas Suspension of Metal Particles. I. One-Dimensional Approximation,” Fiz. Goreniya Vzryva 41 (2), 81–93 (2005) [Combust., Expl., Shock Waves 41 (2), 190–201 (2005)].

    Google Scholar 

  2. Yu. A. Gosteev, A. V. Fedorov, and A. V. Shulgin, “Discrete–Continual Model of Flame Propagation in a Gas Suspension of Metal Particles. II. Allowance for the Pre-Flame Oxidation Reaction,” Fiz. Goreniya Vzryva 41 (2), 94–97 (2005) [Combust., Expl., Shock Waves 41 (2), 202–205 (2005)].

    Google Scholar 

  3. D. R. Ballal, “Flame Propagation through Dust Clouds of Carbon, Coal, Aluminium and Magnesium in an Environment of Zero Gravity,” Proc. Roy. Soc. London, A: Math. Phys. Sci. 385 (1788), 21–51 (1983).

    Article  ADS  Google Scholar 

  4. A. V. Fedorov, V. M. Fomin, and Yu. A. Gosteev, Dynamics and Ignition of Gas Suspensions (Novosibirsk State Technical University, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  5. B. I. Khaikin, V. N. Bloshenko, and A. G. Merzhanov, “Ignition of Metal Particles,” Fiz. Goreniya Vzryva 6 (4), 474–488 (1970).

    Google Scholar 

  6. V. N. Bloshenko, A. G. Merzhanov, and B. I. Khaikin, “Question of Determining the Kinetic Parameters of High-Temperature Oxidation of Magnesium,” Fiz. Goreniya Vzryva 12 (5), 682–688 (1976) [Combust., Expl., Shock Waves 12 (5), 612–617 (1976)].

    Google Scholar 

  7. G. K. Ezhovskii, A. S. Mochalova, E. S. Ozerov, et al., “Ignition and Combustion of a Magnesium Particle,” in Combustion and Explosion (Nedra, Moscow, 1972), pp. 234–240 [in Russian].

    Google Scholar 

  8. G. K. Ezhovskii and E. S. Ozerov, “Combustion of Powdered Magnesium,” Fiz. Goreniya Vzryva 13 (6), 845–852 (1977) [Combust., Expl., Shock Waves 13 (6), 716–721 (1977)].

    Google Scholar 

  9. H. M. Cassel and I. Liebman, “Combustion of Magnesium Particles II—Ignition Temperatures and Thermal Conductivities of Ambient Atmospheres,” Combust. Flame 7 (1), 79–81 (1963).

    Article  Google Scholar 

  10. A. E. Valov, E. I. Gusachenko, and V. I. Shevtsov, “Influence of the Pressure of the Oxidative Medium and the Oxygen Concentration on Single Magnesium Particles,” Fiz. Goreniya Vzryva 27 (4), 3–7 (1991) [Combust., Expl., Shock Waves 27 (4), 393–395 (1991)].

    Google Scholar 

  11. M. A. Gurevich and A. M. Stepanov, “Ignition of a Metal Particle,” Fiz. Goreniya Vzryva 4 (3), 334–342 (1968).

    Google Scholar 

  12. V. A. Mikhelson, “About the Normal Velocity of Ignition of Detonating Gas Mixtures,” Uch. Zap. Imp. Mosk. Univ., Otd. Fiz.-Mat., No. 10, 1–92 (1893).

    Google Scholar 

  13. A. V. Fedorov, V. M. Fomin, and A. V. Shulgin, “Physicomathematical Modeling of Combustion of Aluminum Nanoparticles near the End Face of the Shock Tube,” Dokl. Akad. Nauk 432 (5), 616–619 (2010).

    MATH  Google Scholar 

  14. A. V. Fedorov and A. V. Shulgin, “Point Model of Combustion of Aluminum Nanoparticles in the Reflected Shock Wave,” Fiz. Goreniya Vzryva 47 (3), 47–51 (2011) [Combust., Expl., Shock Waves 47 (3), 289–293 (2011)].

    Google Scholar 

  15. V. G. Shevchuk, A. K. Bezrodnykh, L. V. Boichuk, and E. N. Kondrat’ev, “Laminar Flame Mechanism in Air Suspensions of Metal Particles,” Fiz. Goreniya Vzryva 24 (2), 85–89 (1988) [Combust., Expl., Shock Waves 24 (2), 201–204 (1988)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorov.

Additional information

Original Russian Text © A.V. Fedorov, A.V. Shulgin, Yu.S. Korneeva.

Published in Fizika Goreniya i Vzryva, Vol. 51, No. 5, pp. 57–65, September–October, 2015.

Original article submitted March 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Shulgin, A.V. & Korneeva, Y.S. Semi-empirical model of the combustion wave in a gas suspension of magnesium particles. Combust Explos Shock Waves 51, 560–567 (2015). https://doi.org/10.1134/S0010508215050068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508215050068

Keywords

Navigation