Skip to main content
Log in

Effect of the curvature of the burning surface of condensed energetic materials on the burning rate

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Combustion of homogeneous condensed energetic materials (CEMs) with a curved burning surface is considered within the framework of the phenomenological theory of unsteady combustion. A dependence of the burning rate on the burning surface curvature is found. It is demonstrated that there exists a limiting surface curvature value above which self-sustained combustion is impossible. This limiting curvature depends on thermophysical and ballistic characteristics of CEMs. The existence of the limiting curvature of the burning surface offers an explanation of the critical conditions of combustion of homogeneous CEMs. Based on this hypothesis, the critical diameters of combustion of several homogeneous CEMs are calculated. The calculated results are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. K. Gusachenko, V. E. Zarko, V. Ya. Zyryanov, and V. P. Bobryshev, Modeling of Combustion of Solid Propellants [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  2. B. V. Novozhilov, Unsteady Combustion of Solid Propellants [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  3. Ya. B. Zel’dovich, O. I. Leipunskii, and V. B. Librovich, Theory of Unsteady Combustion of Gunpowder [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  4. V. N. Marshakov, A. G. Istratov, and V. M. Puchkov, “Combustion-front non-one-dimensionality in singleand double-base propellants,” Combust., Expl., Shock Waves, 39, No. 4, 452–457 (2003).

    Article  Google Scholar 

  5. V. N. Marshakov and A. G. Istratov, “Critical diameter and transverse waves of powder combustion,” Combust., Expl., Shock Waves, 43, No. 2, 188–193 (2007).

    Article  Google Scholar 

  6. V. N. Marshakov, V. I. Kolesnikov-Svinarev, and S. V. Finjakov, “Critical diameter and spot combustion of the ballistite powder,” Khim. Fiz., 28, No. 2, 30–36 (2009).

    Google Scholar 

  7. V. N. Marshakov and G. V. Melik-Gaikazov, “Spotcellular structure of the ammonium perchlorate combustion wave,” Khim. Fiz., 28, No. 12, 45–51 (2009).

    Google Scholar 

  8. A. A. Zenin, O. I. Leipunskii, S. V. Piskovskii, and V. M. Puchkov, “Combustion and extinction of a ballistite propellant at critical diameter,” Combust., Expl., Shock Waves, 12, No. 2, 156–161 (1976).

    Article  Google Scholar 

  9. I. Ya. Vishnivetskii, A. P. Denisyuk, and A. E. Fogel’zang, “Critical conditions of ballistic powder combustion,” Combust., Expl., Shock Waves, 15, No. 1, 8–13 (1979).

    Article  Google Scholar 

  10. V. N. Marshakov, A. G. Istratov, V. I. Kolesnikov-Svinarev, and S. V. Finjakov, “Extinction of the powder during its contact with walls made of various materials and with a substrate,” Khim. Fiz., 27, No. 6, 62–67 (2008).

    Google Scholar 

  11. G. H. Markstein (ed.), Nonsteady Flame Propagation, Pergamon, Oxford (1964).

    Google Scholar 

  12. A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media [in Russian], Inst. of Struct. Macrokinetics, Russian Acad. of Sci., Chernogolovka (1992).

    Google Scholar 

  13. B. E. Rogova, “The Markstein correction to the normal propagation velocity of a curved flame,” Combust., Expl., Shock Waves, 21, No. 3, 311–313 (1985).

    Article  Google Scholar 

  14. V. P. Sinditskii, V. Yu. Egorshev, M. V. Berezin, and V. V. Serushkin, “Mechanism of HMX combustion in a wide range of pressures,” Combust., Expl., Shock Waves, 45, No. 4, 461–477 (2009).

    Article  Google Scholar 

  15. M. W. Beckstead, “Condensed-phase control? Or gasphase control?” Combust., Expl., Shock Waves, 43, No. 2, 243–245 (2007).

    Article  Google Scholar 

  16. Ya. B. Zel’dovich, “Theory of the propagation limit for a quiet flame,” Zh. Éksp. Teor. Fiz., 11, No. 1, 159–168 (1941).

    Google Scholar 

  17. Ya. B. Zel’dovich, “Theory of combustion of propellants and explosives,” Zh. Éksp. Teor. Fiz., 12, Nos. 11/12, 498–524 (1942).

    Google Scholar 

  18. B. N. Kondrikov and B. V. Novozhilov, “Critical combustion diameter of condensed substances,” Combust., Expl., Shock Waves, 10, No. 5, 580–587 (1974).

    Article  Google Scholar 

  19. V. N. Marshakov, “Structure of the combustion wave of nitroglycerin-based powders,” Khim. Fiz., 28, No. 12, 61–65 (2009).

    Google Scholar 

  20. O. Ya. Romanov, “Critical combustion diameter,” Combust., Expl., Shock Waves, 43, No. 1, 25–33 (2007).

    Article  Google Scholar 

  21. A. A. Zenin, O. I. Leipunskii, A. D. Margolin, et al., “Temperature field near the surface of the burning powder and stability of combustion,” Dokl. Akad. Nauk SSSR, 169, No. 9, No. 3, 619–621 (1966).

    Google Scholar 

  22. A. A. Zenin, “Structure of temperature distribution in steady-state burning of a ballistite powder,” Combust., Expl., Shock Waves, 2, No. 3, 40–45 (1966).

    Article  Google Scholar 

  23. A. P. Glazkova, Catalysis of Combustion of Explosives [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  24. A. I. Atwood, T. L. Boggs, P. O. Curran, et al., “Burning rate of solid propellant ingredients. Part 2: Determination of burning rate temperature sensitivity,” J. Propuls. Power, 15, No. 6, 748–752 (1999).

    Article  Google Scholar 

  25. I. Ya. Vishnivetskii, “Laws of combustion of ballistite and pyroxylin powders containing rapidly burning explosives,” Candidate’s Dissertation in Tech. Sci., Mendeleev Inst. of Chem. and Technol., Moscow (1978).

    Google Scholar 

  26. A. P. Denisyuk, V. S. Shabalin, and Yu. G. Shepelev, “Combustion of condensed systems consisting of HMX and a binder capable of self-sustained combustion,” Combust., Expl., Shock Waves, 34, No. 5, 534–542 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rashkovskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 6, pp. 80–90, November–December, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashkovskii, S.A. Effect of the curvature of the burning surface of condensed energetic materials on the burning rate. Combust Explos Shock Waves 47, 687–696 (2011). https://doi.org/10.1134/S0010508211060104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211060104

Key words

Navigation