Skip to main content
Log in

Detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of an experimental study of continuous and pulsed detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers 204 and 500 mm in diameter are presented. The tested substance is pulverized activated charcoal. A method of coal powder supply through narrow channels by means of adding the gas at the injector entrance is found. Stable regimes of continuous spin detonation with one or two transverse detonation waves moving with velocities of 1.8–1.6 km/sec are obtained for the first time in the combustor 204 mm in diameter. The frequency of pulsed detonation with radial waves is 4–4.8 kHz. The limits of continuous detonation in the combustor 500 mm in diameter are extended: regimes of continuous spin detonation with a large number (5–8) of transverse waves moving with velocities of 1.8–1.5 km/sec are obtained, the amount of hydrogen added to coal is reduced to 2.8%, and combustion of coarser fuel particles is ensured owing to an increased residence time of the mixture in the combustor. The wave structure and the flow in the vicinity of the waves are reconstructed in the combustor plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich, “Energy utilization of detonation combustion,” Zh. Tekh. Fiz., 10, No. 17, 1453–1461 (1940).

    Google Scholar 

  2. B. V. Voitsekhovskii, “Steady detonation,” Dokl. Akad. Nauk SSSR, 129, No. 6, 1254–1256 (1959).

    Google Scholar 

  3. G. D. Roy, S. M. Frolov., A. A. Borisov, and D. W. Netzer, “Pulse detonation propulsion: Challenges, current status, and future perspective,” Prog. Energ. Combust. Sci., 30, 545–672 (2004).

    Article  Google Scholar 

  4. F. A. Bykovskii, V. V. Mitrofanov, and E. F. Vedernikov, “Continuous detonation combustion of fuel-air mixtures,” Combust., Expl., Shock Waves, 33, No. 3, 344–353 (1997).

    Article  Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonations,” J. Propuls. Power, 22, No. 6, 1204–1216 (2006).

    Article  Google Scholar 

  6. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of detonation in hydrogen-air mixture flows,” in: S._M. Frolov (ed.), Pulsed Detonation Engines [in Russian], Torus Press, Moscow (2006), pp. 521–540.

    Google Scholar 

  7. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of detonation in a vortical flow hydrogen-air mixtures,” in: G. Roy, S. Frolov, and J. Sinibaldi (eds.), Pulsed and Continuous Detonations, Torus Press, Moscow (2006), pp. 326–331.

    Google Scholar 

  8. F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, and Yu. A. Zholobov, “Continuous and pulsed detonation in a coal-air mixture,” Dokl. Ross. Akad. Nauk, 431, No. 2, 188–190 (2010).

    Google Scholar 

  9. F. A. Bykovskii and E. F. Vedernikov, “Continuous spin detonation of hydrogen-oxygen mixtures. 3. Method of measuring flow parameters and flow structure in combustors of different geometries,” Combust., Expl., Shock Waves, 44, No. 4, 451–460 (2008).

    Article  Google Scholar 

  10. F. A. Bykovskii, “High-speed waiting photodetector,” Zh. Nauch. Prikl. Fotogr. Kinemat., No. 2, 85–89 (1981).

  11. W. B. Cybulski, “Detonation of coal dust,” Bull. Acad. Polon. Sci., Ser. Sci. Techn., 19, No. 5, 37–41 (1971).

    Google Scholar 

  12. A. M. Bykov and A. N. Prozorov, “Possibility of emergence of strong explosions of coal dust in moderate-length dead-end mines,” Fiz. Goreniya Vzryva, 16, No. 1, 153–154 (1980).

    Google Scholar 

  13. D. H. Edwards, P. J. Fearnley, and M. A. Nettleton, “Detonation limits of clouds of coal dust in mixtures of oxygen and nitrogen,” Combust., Expl., Shock Waves, 23, No. 2, 239–245 (1987).

    Article  Google Scholar 

  14. V. A. Levin and Yu. V. Tunik, “Initiation of detonation combustion for coal dust in a methane-air mixture,” Combust., Expl., Shock Waves, 23, No. 1, 1–5 (1987).

    Article  Google Scholar 

  15. B. V. Kantorovich, Fundamentals of the Theory of Combustion and Gasification of a Solid Fuel [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958).

    Google Scholar 

  16. B. V. Kantorovich, V. I. Mitkalinnyi, G. N. Delyagin, and V. M. Ivanov, Hydrodynamics and Theory of Combustion of Fuel Flow [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  17. F. A. Bykovskii, E. F. Vedernikov, S. V. Polozov, and Yu. V. Golubev, “Initiation of detonation in flows of fuel-air mixtures,” Combust., Expl., Shock Waves, 43, No. 3, 345–354 (2007).

    Article  Google Scholar 

  18. F. A. Bykovskii and E. F. Vedernikov, “The flow in a planar-radial vortex chamber. 2. Vortex structure of the flow,” J. Appl. Mech. Tech. Phys., 41, No. 1, 35–43 (2000).

    Article  ADS  Google Scholar 

  19. F. A. Bykovskii, S. A. Zhdan, V. V. Mitrofanov, and E. F. Vedernikov, “Self-ignition and special features of flow in a planar vortex chamber,” Combust., Expl., Shock Waves, 35, No. 6, 622–636 (1999).

    Article  Google Scholar 

  20. F. A. Bykovskii and E. F. Vedernikov, “The flow in a planar-radial vortex chamber. 1. An experimental study of the velocity field in transient and steady flows,” J. Appl. Mech. Tech. Phys., 40, No. 6, 1097–1105 (1999).

    Article  ADS  Google Scholar 

  21. V. I. Malinin, E. I. Kolomin, and I. S. Antipin, “Ignition and combustion of aluminum-air suspensions in a reactor for high-temperature synthesis of alumina powder,” Combust., Expl., Shock Waves, 38, No. 5, 525–534 (2002).

    Article  Google Scholar 

  22. A. G. Egorov, Combustion of Powdered Aluminum in Air-Breathing Chambers of Jet Engines [in Russian], Izd. Samar. Nauch. Tsentra Ross. Akad. Nauk, Samara (2005).

    Google Scholar 

  23. I. Sh. Akhatov and P. B. Vainshtein, “Nonstationary combustion regimes in porous powders,” Combust., Expl., Shock Waves, 19, No. 3, 297–304 (1983).

    Article  Google Scholar 

  24. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors,” Combust., Expl., Shock Waves, 44, No. 2, 150–162 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bykovskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 4, pp. 109–118, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F. et al. Detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers. Combust Explos Shock Waves 47, 473–482 (2011). https://doi.org/10.1134/S0010508211040113

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211040113

Keywords

Navigation