Skip to main content
Log in

Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A comprehensive numerical and experimental study of continuous spin detonation of a hydrogen-oxygen mixture in annular combustors with the components supplied through injectors is performed. In an annular combustor 4 cm in diameter, burning of a hydrogen-oxygen gas mixture in the regime of continuous spin detonation is obtained. The flow structure is considered for varied flow rates of the components of the mixture and the combustor length and shape. The dynamics of the transverse detonation wave is numerically studied in a two-dimensional unsteady statement of the problem with the geometric parameters of the combustors consistent with experimental ones. A comparison with experiments reveals reasonable agreement in terms of the detonation velocity and pressure in the combustor. The calculated size and shape of detonation fronts are substantially different from the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Bykovskii, I. D. Klopotov, and V. V. Mitrofanov, “Spin detonation of gases in a cylindrical combustor,” Dokl. Akad. Nauk SSSR, 224, No. 5, 1038–1041 (1975).

    Google Scholar 

  2. F. A. Bykovskii and V. V. Mitrofanov, “Detonation combustion of a gas mixture in a cylindrical chamber,” Combust., Expl., Shock Waves, 16, No. 5, 570–578 (1980).

    Article  Google Scholar 

  3. F. A. Bykovskii, “Some properties of the flow with continuous detonation in an annular cylindrical chamber,” in: Proc. VIII All-Union Symp. on Combustion and Explosion, Tashkent (1986), pp. 16–19.

  4. S. A. Zhdan, F. A. Bykovskii, and E. F. Vedernikov, “Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture,” Combust., Expl., Shock Waves, 43, No. 4, 449–459 (2007).

    Article  Google Scholar 

  5. F. A. Bykovskii and E. F. Vedernikov, “Discharge coefficients of nozzles and of their combinations in forward and reverse flow,” J. Appl. Mech. Tech. Phys., 37, No. 4, 541–546 (1996).

    Article  ADS  Google Scholar 

  6. F. A. Bykovskii, “High-speed waiting photodetector,” Zh. Nauch. Prikl. Fotogr. Kinematogr., No. 2, 85–89 (1981).

  7. B. V. Voitsekhovskii and B. E. Kotov, “Optical study of the spin detonation-wave front,” Izv. Akad. Nauk SSSR, No. 4, 74–80 (1958).

    Google Scholar 

  8. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonation in fuel-air mixtures,” Combust., Expl., Shock Waves, 42, No. 4, 463–471 (2006).

    Article  Google Scholar 

  9. S. A. Zhdan and F. A. Bykovskii, “Investigations of continuous spin detonations at Lavrent’ev institute of hydrodynamics,” in: G. Roy and S. Frolov (eds.), Pulse and Continuous Detonation Propulsion, Torus Press, Moscow (2006), pp. 181–204.

    Google Scholar 

  10. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous spin detonations,” J. Propuls. Power, 22, No. 6, 1204–1216 (2006).

    Article  Google Scholar 

  11. B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).

    Google Scholar 

  12. A. A. Vasil’ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases,” Combust., Expl., Shock Waves, 23, No. 5, 605–623 (1987).

    Article  Google Scholar 

  13. A. A. Vasil’ev, “Cell size as the main geometric parameter of a multifront detonation wave,” J. Propuls. Power, 22, No. 6, 1245–1260 (2006).

    Article  Google Scholar 

  14. V. I. Manzhalei and V. V. Mitrofanov, “The stability of detonation shock waves with a spinning configuration,” Combust. Expl. Shock Waves, 9, No. 5, 614–620 (1973).

    Article  Google Scholar 

  15. V. I. Manzhalei, “Instability of the detonation front in gases,” Candidate’s Dissertation in Phys.-Math. Sci., Novosibirsk (1981).

  16. Ya. B. Zel’dovich and A. S. Kompaneets, Theory of Detonation, Academic Press, New York (1960).

    Google Scholar 

  17. A. A. Vasiliev, T. P. Gavrilenko, and M. E. Topchian, “On the Chapman-Jouguet surface in multifront gaseous detonations,” in: Combustion and Explosion [in Russian], Nauka, Moscow (1972), pp. 481–486.

    Google Scholar 

  18. A. A. Vasil’ev, “Extension of the chemical peak in a multifront detonation,” Combust., Expl., Shock Waves, 14, No. 4, 523–525 (1978).

    Article  Google Scholar 

  19. V. V. Mitrofanov, Detonation of Homogeneous and Heterogeneous Systems [in Russian], Lavrentyev Inst. Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Bykovskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 2, pp. 32–45, March–April, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. Continuous spin detonation of hydrogen-oxygen mixtures. 1. Annular cylindrical combustors. Combust Explos Shock Waves 44, 150–162 (2008). https://doi.org/10.1007/s10573-008-0021-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-008-0021-1

Key words

Navigation