Skip to main content
Log in

Heterogeneous combustion in systems containing chemical elements of group III. Generation of electric potentials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The behavior of frontally burning heterogeneous systems containing boron, aluminum, gallium, indium, yttrium, lanthanum, and ytterbium is studied by a potentiometric method. These systems are used for self-propagating high-temperature synthesis of some oxide materials. The peak values of the electromotive force of combustion arising between the combustion wave front and the synthesis products in systems with participation of triple-charged ions of these chemical elements are found to be directly proportional to the ionic potential of the chemical element and reach 150–400 mV. The use of two heteropolarly reacting systems as elements of the electromotive force of combustion in one array assembly allows the difference in potentials to be increased to 2.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Merzhanov, Processes of Combustion and Synthesis of Materials [in Russian], ISMAN, Chernogolovka (1998).

    Google Scholar 

  2. Yu. G. Morozov, M. V. Kuznetsov, M. D. Nersesyan, and A. G. Merzhanov, “Electrochemical phenomena in processes of self-propagating high-temperature synthesis,” Dokl. Phys. Chem., 351, Nos. 4–6, 352–354 (1996).

    Google Scholar 

  3. Yu. M. Maksimov, A. I. Kirdyashkin, V. S. Korogodov, and V. L. Polyakov, “Generation and transfer of an electric charge in self-propagating high-temperature synthesis using the Co-S system as an example,” Combust., Expl., Shock Waves, 36, No. 5, 670–673 (2000).

    Article  Google Scholar 

  4. A. I. Kirdyashkin, V. L. Polyakov, Yu. M. Maksimov, and V. S. Korogodov, “Specific features of electric phenomena in self-propagating high-temperature synthesis,” Combust., Expl., Shock Waves, 40, No. 2, 180–185 (2004).

    Article  Google Scholar 

  5. Yu. M. Maksimov, A. I. Kirdyashkin, R. M. Gabbasov, and V. G. Salamatov, “Emission phenomena in a SHS combustion wave,” Combust., Expl., Shock Waves, 45, No. 4, 454–460 (2009).

    Article  Google Scholar 

  6. A. I. Kirdyashkin, V. G. Salamatov, Yu. M. Maksimov, et al., “Optical emission spectrum in combustion with formation of condensed reaction products,” Combust., Expl., Shock Waves, 46, No. 1, 117–120 (2010).

    Article  Google Scholar 

  7. Yu. G. Morozov, M. V. Kuznetsov, S. G. Bakhtamov, and A. A. Chobko, “Dynamics of ions in the processes of heterogeneous combustion with participation of solid oxidation agents based on alkali metals,” Adv. Chem. Phys., 4, No. 1, 90–96 (2005).

    Google Scholar 

  8. Yu. G. Morozov, M. V. Kuznetsov, S. G. Bakhtamov, et al., “Ionic species formed upon thermal decomposition of solid oxidants containing alkaline-earth metals,” Khim. Fiz., 26, No. 8, 54–62 (2007).

    Google Scholar 

  9. Yu. G. Morozov, M. V. Kuznetsov, and O. V. Belousova, “Generation of electrical potentials during heterogeneous combustion in systems containing VI group elements,” Russ. J. Chem. Phys., 3, No. 5, 807–812 (2009).

    Article  Google Scholar 

  10. Yu. G. Morozov and M. V. Kuznetsov, “Effect of magnetic fields on combustion electromotive force,” Combust., Expl., Shock Waves, 35, No. 1, 18–22 (1999).

    Article  Google Scholar 

  11. V. F. Proskudin, “EMF of solid-flame combustion of heterogeneous systems in loose and pressed states,” Combust., Expl., Shock Waves, 42, No. 4, 430–435 (2006).

    Article  Google Scholar 

  12. Yu. G. Morozov and M. V. Kuznetsov, “Origin of electromotive force during burning,” Chem. Phys. Repts., 19, No. 11, 2191–2203 (2000).

    Google Scholar 

  13. Yu. G. Morozov, M. V. Kuznetsov, S. G. Bakhtamov, and S. M. Busurin, “Investigation of boron interaction with chromium oxide by the method of dynamic ionography,” Izv. Vyssh. Uchebn. Zaved., Khimiya Khim. Tekhnol., 46, No. 4, 93–98 (2003).

    Google Scholar 

  14. Yu. G. Morozov and M. V. Kuznetsov, “Electromotive force of combustion and ion potential in Mendeleev’s periodical table,” in: Proc. 18th Mendeleev’s Forum on General and Applied Chemistry, Vol. 1, Moscow (2007), p. 343.

  15. L. H. Ahrens, “The use of ionization potentials. Part I. — Ionic radii of the elements,” Geochim. Cosmochim. Acta, 2, No. 3, 155–169 (1952).

    Article  ADS  Google Scholar 

  16. L. C. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca-New York (1960).

    Google Scholar 

  17. G. B. Bokii, Crystallochemistry [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  18. Yu. G. Morozov and M. V. Kuznetsov, “Dynamic ionography of SHS processes,” Khim. Fiz., 20, No. 11, 28–34 (2001).

    Google Scholar 

  19. T. F. Grigor’eva, I. A. Vorsina, M. A. Korchagin, et al., “Obtaining fine-grain complex oxides of tungsten and molybdenum,” Khim. Inter. Ust. Razv., 7, No. 5, 511–515 (1999).

    Google Scholar 

  20. Yu. G. Morozov and M. V. Kuznetsov, “Probe measurements of ionization under conditions of flame propagation,” High Temp., 36, No. 2, 319–320 (1998).

    Google Scholar 

  21. K. S. Martirosyan, I. A. Filimonov, and D. Luss, “New measuring techniques of electric field generated by combustion synthesis,” Int. J. SHS, 11, No. 4, 325–334 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Morozov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 1, pp. 67–73, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, Y.G., Kuznetsov, M.V. & Belousova, O.V. Heterogeneous combustion in systems containing chemical elements of group III. Generation of electric potentials. Combust Explos Shock Waves 47, 59–64 (2011). https://doi.org/10.1134/S0010508211010084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211010084

Keywords

Navigation