Skip to main content
Log in

Combustion Modes of Mixtures of Copper (II) Oxide with Aluminum and Titanium

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The influence of the ratio of the initial components on the combustion parameters and modes of mixtures of aluminum with copper oxide has been studied. It has been shown that under normal conditions, such mixtures can burn stably when they contain not less than 30% copper oxide. Moreover, with an increase in the content of copper oxide to the stoichiometric ratio, there is a regular change in combustion mode: self-oscillatory, spin, combined convective and multi-hotspot, flame, and fireball combustion modes. In addition, the effect of the ratio of the components on the combustion of copper oxide–aluminum–titanium ternary mixtures was studied, and concentration regions were determined for four main modes of their combustion: the self-oscillatory, hotspot, flame, and fireball modes. It has been shown that the hotspot combustion of such mixtures can proceed in five different modes: a spin mode, a multi-hotspot mode, a combined convective and multi-hotspot mode, a multi-hotspot mode with the formation of a counter front, and a multi-hotspot mode with periodic ejection of combustion products. Depending on the ratio of the initial components, the condensed combustion products of mixtures of copper oxide with aluminum and titanium were found to contain copper, Al3Ti, Ti3Al, and CuAl5Ti2 intermetallic compounds, and Al2O3, TiO2, TiO, Cu2O, Al2TiO5, and Cu3Ti3O oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Yu. M. Mikhailov, V. V. Aleshin, V. I. Vershinnikov, and T. I. Ignat’eva, “Burning of Mixtures of Copper Oxide with Titanium," Fiz. Goreniya Vzryva 54 (1), 33–38 (2018) [Combust., Expl., Shock Waves 54 (1), 30–34 (2018); https://doi.org/10.1134/S0010508218010069].

    Article  Google Scholar 

  2. V. E. Mel’nikov, Modern Pyrotechnics (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  3. L. Glavier, G. Taton, J.-M. Ducéré, V, Baijot, S. Pinon, Th. Calais, A. Estève, M. Djafari Rouhani, and C. Rossi, “Nanoenergetics as Pressure Generator for Nontoxic Impact Primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 Nanothermites and Al/PTFE," Combust. Flame 162 (5), 1813–1820 (2015); https://doi.org/10.1016/j.combustflame.2014.12.002.

    Article  Google Scholar 

  4. K. S. Martirosyan, “Nanoenergetic Gas-Generators: Principles and Applications," J. Mater. Chem. 21 (26), 9400–9405 (2011); https://doi.org/ 10.1039/C1JM11300C.

    Article  Google Scholar 

  5. I. E. Dubrovskaya, K. V. Mikryukov, and I. A. Abdullin, “Granular and Loose Compositions for Generating a Sound Pulse," Vestn. Kazan. Tekhnol. Univ., No. 7, 414–417 (2010).

  6. S. Yu. Anan’ev, A. Yu. Dolgoborodov, and B. D. Yankovskii, “ Expansion Dynamics of Combustion Products of a Mechanically Activated Mixture of Aluminum with Copper Oxide," Gorenie Vzryv 10 (4), 81–85 (2017).

    Google Scholar 

  7. D. Stamatis, X. Jiang, E. Beloni, and E. L. Dreizin, “Aluminum Burn Rate Modifiers Based on Reactive Nanocomposite Powders," Propell., Explos., Pyrotech. 35 (3), 260–267 (2010).

    Article  Google Scholar 

  8. A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-Rouhani, et al., “Investigation of Al/CuO Multilayered Thermite Ignition," J. Appl. Phys. 121 (3), 034503 (2017); https://doi.org/10.1063/1.4974288.

    Article  ADS  Google Scholar 

  9. R. Thiruvengadathan, A. Bezmelnitsyn, S. Apperson, C. Staley, P. Redner, W. Balas, S. Nicolich, D. Kapoor, K. Gangopadhyay, and Sh. Gangopadhyay, “Combustion Characteristics of Novel Hybrid Nanoenergetic Formulations," Combust. Flame 158 (5), 964–978 (2011); https://doi.org/10.1016/j.combustflame.2011.02.004.

    Article  Google Scholar 

  10. G. C. Egan and M. R. Zachariah, “Commentary on the Heat Transfer Mechanisms Controlling Propagation in Nanothermites," Combust. Flame 162 (7), 2959–2961 (2015); https:// doi.org/10.1016/j.combustflame.2015.04.013.

    Article  Google Scholar 

  11. V. I. Vershinnikov, T. I. Ignat’eva, V. V. Aleshin, and Yu. M. Mikhailov, “Fine Ti Powders through Metallothermic Reduction in TiO2–Mg–Ca Mixtures," Int. J. Self-Propag. High-Temp. Synth. 27 (1), 55–59 (2018).

    Article  Google Scholar 

  12. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., “Physical Quantities: Reference Book," Ed. by I. S. Grigor’ev and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  13. A. Kar, S. Mandal, S. Rathod, and A. K. Ray, “Effect of Ti Diffusivity on the Formation of Phases in the Interface of Alumina–Alumina Brazed with 97(Ag40Cu)3Ti Filler Alloy," in Proc. of the 3nd Int. Brazing and Soldering Conf., San Antonio 2006.

  14. V. R. Shmorgun, O. V. Slautin, D. A. Evstropov, and R. E. Novikov, “Phase Composition and Micromechanical Properties of Coatings of the Al–Ti–Cu System Formed during Liquid-Phase Interaction on Copper Substrates," Vestn. Sib. Gos. Indust. Univ. 14 (4), 9–11 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Aleshin or V. I. Vershinnikov.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 5, pp. 67-73.https://doi.org/10.15372/FGV20210506.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, Y.M., Aleshin, V.V., Vershinnikov, V.I. et al. Combustion Modes of Mixtures of Copper (II) Oxide with Aluminum and Titanium. Combust Explos Shock Waves 57, 570–575 (2021). https://doi.org/10.1134/S0010508221050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221050063

Keywords

Navigation