Skip to main content
Log in

Combustion of derivatives of 1,5-diaminotetrazole

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Combustion behavior of 1,5-diaminotetrazole (DAT), its salt with perchloric acid DAT·HClO4, and coordination compounds (CCs) with Ni(II), Co(II), Cu(II), Cd, and Zn perchlorates in the interval of pressures from 0.1 to 36 MPa are studied. Despite the high energy content, DAT starts to burn only at extremely high pressures (above 24 MPa). Diaminotetrazole perchlorate possesses the maximum burning rate among all known organic perchlorates, and its combustion is described by a gas-phase model. The CC burning rates are also very high: the burning rate of [Cu(DAT)6](ClO4)2 reaches the record-beating value (for laminar combustion) of 1670 mm/sec at a pressure of 34 MPa. CC combustion is also assumed to follow a gas-phase model. The influence of the metal nature on the combustion behavior of explosive coordination compounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. Gaponik and V. P. Karavai, “Synthesis and properties of 1,5-diaminotetrazole,” Chem. Heterocyclic Compounds, 20, No. 12, 1388–1391 (1984).

    Article  Google Scholar 

  2. V. E. Matulis, A. S. Lyakhov, P. N. Gaponik, et al., “1,5-Diamino-1H-1,2,3,4-tetrazolium picrate: X-ray molecular and crystal structures and ab initio MO calculations,” J. Mol. Struct., 649, 309–314 (2003).

    Article  ADS  Google Scholar 

  3. G. Drake, T. Hawkings, L. Hall, et al., “Experimental and theoretical study of 1,5-diamino-1,2,3,4-tetrazoloum perchlorate,” Prop., Explos., Pyrotechn., 30, No. 2, 156–163 (2005).

    Article  Google Scholar 

  4. J. C. Galvez-Ruiz, G. Holl, K. Karaghiosoff, et al., “Derivatives of 1,5-diamino-1H-tetrazole: A new family of energetic heterocyclic-based salts,” Inorg. Chem., 44, No. 12, 4237–4253 (2005).

    Article  Google Scholar 

  5. T. M. Klapötke and J. Stierstorfer, “The new energetic compounds 1,5-diaminotetrazolium and 5-amino-1-methyltetrazolium dinitramide — synthesis, characterization and testing,” Eur. J. Inorg. Chem., No. 26, 4055–4062 (2008).

    Google Scholar 

  6. M. Bichay and J. Hirlinger, “New primary explosives development for medium caliber stab detonators,” ARDEC Report, SERDP Project No. PP-1364 (2004), pp. 1–102.

  7. V. Huynh My Hang, “Explosive complexes,” U.S. Patent No. 2008/001904, 02.15.2007, pp. 1–23.

  8. Y. Cui, J. Zhang, T. Zhang, et al., “Synthesis, structural investigation, thermal decomposition mechanism and sensitivity properties of an energetic compound [Cd(DAT)6](ClO4)2,” J. Hazard. Mater., 160, 45–50 (2008).

    Article  Google Scholar 

  9. A. Yu. Zhilin, M. A. Ilyushin, I. V. Tselinskii, et al., “Highly energetic tetrazolates of cobalt (III),” Zh. Prikl. Khim., 77, No. 5, 798–800 (2004).

    Google Scholar 

  10. A. V. Smirnov, M. A. Ilyushin, and I. V. Tselinskii, “Synthesis of complex amminates of cobalt (III) as explosives for initiation purposes,” Zh. Prikl. Khim., 76, 572–576 (2003).

    Google Scholar 

  11. Y. Cui, T. Zhang, J.-G. Zhang, et al., “Preparation, crystal structure and thermal analyses of 1,5-Diamino-4-hydro-1,2,3,4-tetrazolium 3,5-Dihydroxy-2,4,6-trinitrophenolate,” Chin. J. Chem., 26, 426–432 (2008).

    Article  Google Scholar 

  12. Y. Cui, J. Zhang, T. Zhang, et al., “Synthesis, structural investigation and thermal analyses of a novel coordination compound [Cd(DAT)6](HTNR)2·3.5H2O,” J. Mol. Struc., 889, 177–185 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Cui, T. Zhang, J.-G. Zhang, et al., “Preparation, crystal structure and thermal analyses of a nitrogenrich coordination compound [Co(DAT)6](PA)2·4H2O,” Chinese J. Chem., 26, 2029–2034 (2008).

    Article  Google Scholar 

  14. Y. Cui, T. Zhang, J.-G. Zhang, et al., “Study on crystal structure and thermal decomposition mechanism of a novel coordination compound [Zn(DAT)2 (H2O)4](PA)2·2H2O,” Prop., Explos., Pyrotechn., 33, No. 6, 437–442 (2008).

    Article  Google Scholar 

  15. W. J. Williams, Handbook of Anion Determination, Butterworth, London (1979).

    Google Scholar 

  16. A. S. Lyakhov, P. M. Gaponik, and S. V. Voitekhovich, “1,5-Diamino-1H-1,2,3,4-tetrazole,” Acta Cryst., C57, 185–186 (2001).

    Google Scholar 

  17. A. E. Fogelzang, V. Yu. Egorshev, V. P. Sinditskii, and M. D. Dutov, “Combustion of nitro derivatives of azidobenzenes and benzofuroxans,” Combust. Flame, 87, 123–135 (1991).

    Article  Google Scholar 

  18. G. B. Belov, “Thermodynamic analysis of combustion products at high temperature and pressure,” Prop., Explos., Pyrotechn., 23, 86–89 (1998).

    Article  Google Scholar 

  19. T. S. Kon’kova, Yu. N. Matyushin, V. P. Sinditskii, et al., “Thermochemistry of transition metal complexes with 1,5-Diaminotetrazole,” in: Proc. 31st Int. Annu. Conf. of ICT (Karlsruhe, FRG, June 3 to July 6, 2000), Paper No. 88, pp. 1–6.

  20. A. E. Fogelzang, V. Yu. Egorshev, V. P. Sinditskii, et al., “Study of combustion of tetrazoles and their derivatives,” in: Combustion of Condensed Substances, Proc. 9th All-Union Symp. on Combustion and Explosion, Inst. Chem. Phys., Chernogolovka (1989), pp. 3–5, 129–131.

  21. A. E. Fogelzang, V. Y. Egorshev, and V. P. Sinditskii, “Influence of chemical nature of substituent on the burning rate of 5-Substituted tetrazoles,” in: Proc. 17th Int. Pyrotechn. Sem. Combined with 2nd Beijing Int. Symp. Pyrotechn. Explos., Vol. 2, Beijing Inst. of Technology Press, Beijing, China (1991), pp. 618–623.

    Google Scholar 

  22. A. I. Lesnikovich, G. V. Printsev, O. A. Ivashkevich, et al., “Tetrazole combustion,” Combust., Expl., Shock Waves, 24, No. 5, 549–551 (1988).

    Article  Google Scholar 

  23. V. P. Sinditskii, V. Y. Egorshev, A. E. Fogelzang, et al., “Combustion behavior and flame structure of tetrazole derivatives,” in: Proc. 29th Int. Annu. Conf. of ICT, Paper No. 171, Karlsruhe, FRG (1998), pp. 1–14.

  24. V. P. Sinditskii, V. Yu. Egorshev, A. E. Fogelzang, et al., “Mechanism of combustion of tetrazole derivatives,” Zh. Khim. Fiz., 18, No. 8, 1569–1583 (2000).

    Google Scholar 

  25. V. P. Sinditskii, A. E. Fogelzang, V. Yu. Egorshev, et al., “Effect of molecular structure on combustion of polynitrogen energetic materials,” in: V. Yang, T. B. Brill, and W. Z. Ren (eds.), Progress in Astronautics and Aeronautics, Vo. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, AIAA, Reston, VA (2000), pp. 99–128.

    Google Scholar 

  26. R. A. Henry, W. G. Finnegan, and E. Lieber, “Thermal isomerization of substituted 5-Aminotetrazoles,” J. Amer. Chem. Soc., 76, No. 1, 88–93 (1954).

    Article  Google Scholar 

  27. R. A. Henry, W. G. Finnegan, and E. Lieber, “Kinetics of the isomerization of substituted 5-Aminotetrazoles,” J. Amer. Chem. Soc., 77, No. 8, 2264–2270 (1955).

    Article  Google Scholar 

  28. V. G. Prokudin, V. S. Poplavskii, and V. A. Ostrovskii, “Mechanism of monomolecular thermal decomposition of tetrazole and its 5-substituted derivatives,” Izv. Ross. Akad. Nauk, Ser. Khim., No. 9, 2216–2219 (1996).

    Google Scholar 

  29. A. I. Lesnikovich, O. A. Ivachkevich, S. V. Levchik, et al., “Thermal decomposition of aminotetrazoles,” Thermochim. Acta, 388, 233–251 (2002).

    Article  Google Scholar 

  30. M. Kh. Karapet’yants, Chemical Thermodynamics [in Russian], Khimiya, Moscow (1975).

    Google Scholar 

  31. V. D. Aleshin, B. S. Svetlov, and A. E. Fogelzang, “Combustion of some organic perchlorates,” Dokl. Akad. Nauk SSSR, 185, No. 4, 45–49 (1969).

    Google Scholar 

  32. A. E. Fogelzang and B. S. Svetlov, “Relation between the structure of explosives and their burning rates,” Dokl. Akad. Nauk SSSR, 192, No. 6, 1322–1325 (1970).

    Google Scholar 

  33. A. E. Fogelzang, V. Ya. Adzhemyan, and B. S. Svetlov, “Effect of the nature of the oxidizer in explosives on their burning rates,” Dokl. Akad. Nauk SSSR, 199, No. 6, 1296–1298 (1971).

    Google Scholar 

  34. A. E. Fogelzang, B. S. Svetlov, V. S. Opryshko, and V. Ya. Adzhemyan, “Investigation of the combustion of organic perchlorates,” Combust., Expl., Shock Waves, 8, No. 2, 206–217 (1972).

    Article  Google Scholar 

  35. T. L. Boggs, “Deflagration rate, surface structure and subsurface profile of self-deflagration single crystals of ammonium perchlorate,” AIAA J., 8, No. 5, 867–873 (1970).

    Article  ADS  Google Scholar 

  36. A. E. Fogelzang, V. Ya. Adzhemyan, and B. S. Svetlov, “Role of the reactive capability of the oxidizing group in combustion of explosives,” in: Proc. 3rd All-Union Symp. on Combustion and Explosion, Nauka, Moscow (1972), pp. 63–66.

    Google Scholar 

  37. A. M. Viktorenko, G. V. Ivanov, and O. M. Markov, “Mechanism of burning methylamine perchlorate,” Combust., Expl., Shock Waves, 12, No. 1, 17–20 (1976).

    Article  Google Scholar 

  38. V. P. Sinditskii, A. E. Fogelzang, A. L. Levshenkov, et al., “Combustion of 5-Aminotetrazole salts,” in: Proc. 21st Int. Pyrotech. Seminar, Moscow, September 11–15 (1995), pp. 762–773.

  39. E. I. Maksimov, Yu. M. Grigor’ev, and A. G. Merzhanov, “Laws of combustion and mechanism of ammonium perchlorate combustion,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 422–429 (1966).

    Google Scholar 

  40. M. W. Beckstead, R. L. Derr, and C. F. Price, “The combustion solid monopropellants and composite propellants,” in: Proc. 13th Symp. on Combustion, Combustion Inst., Pittsburgh (1971), pp. 1047–1056.

    Google Scholar 

  41. G. B. Manelis and V. A. Strunin, “The mechanism of ammonium perchlorate burning,” Combust. Flame, 17, 69–77 (1971).

    Article  Google Scholar 

  42. C. Guirao and F. A. Williams, “A model for ammonium perchlorate deflagration between 20 and 100 atm,” AIAA J., 9, No. 7, 1345–1356 (1971).

    Article  ADS  Google Scholar 

  43. J. Powling and W. A. W. Smith, “The surface temperature of burning ammonium perchlorate,” Combust. Flame, 7, No. 3, 269–275 (1963).

    Article  Google Scholar 

  44. V. P. Sinditskii, A. E. Fogelzang, V. Y. Egorshev, et al., “Catalysis and combustion mechanism of coordination compounds,” in: Proc. 21st Int. Pyrotech. Seminar, Moscow, September 11–15 (1995), pp. 747–761.

  45. A. E. Fogelzang, V. Yu. Egorshev, V. P. Sinditskii, et al., “A study on burning behavior of chemical analogs of explosive CP,” in: Proc. 18st Int. Pyrotech. Seminar, Colorado, July 13–17 (1992), pp. 303–320.

  46. A. E. Fogelzang, V. P. Sinditskii, V. Yu. Egorshev, and V. V. Serushkin, “Effect of structure of energetic materials on burning rate,” in: Decomposition, Combustion and Detonation Chemistry of Energetic Materials, Boston, November 27–30 (1995), pp. 151–161. (MRS Symp. Proc.; Vol. 418.)

  47. V. P. Sinditskii and V. V. Serushkin, “Design and combustion behaviour of explosive coordination compounds,” Defence Science J., 46, No. 5, 371–383 (1996).

    Google Scholar 

  48. V. P. Sinditskii and A. E. Fogelzang, “Design of explosive coordination compounds,” Ros. Khim. Zh., 41, No. 4, 74–80 (1997).

    Google Scholar 

  49. V. P. Sinditskii, V. Y. Egorshev, and V. V. Serushkin, “Design and combustion behavior of metal-containing energetic materials,” in: Proc. Sino-Russian Int. Academic Conf. on 50th Anniversary of the Funding of BIT, Beijing, China, September 20–21 (2000), pp. 174–190.

  50. H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., 29, 1702–1706 (1957).

    Article  Google Scholar 

  51. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Powders and Explosives [in Russian], Nauka, Moscow (1996).

    Google Scholar 

  52. Yu. I. Rubtsov, A. I. Ranevskii, and G. B. Manelis, “Kinetics of thermal decomposition of the mixture of ammonium and guanidium perchlorates,” Zh. Fiz. Khim., 44, No. 1, 47–51 (1970).

    Google Scholar 

  53. I. I. Moiseev and M. N. Vergaftik, “Metallocomplex catalysis of oxidation reactions: principles and problems,” Usp. Khim., 39, No. 12, 1931–1959 (1990).

    Google Scholar 

  54. J. P. Collman, J. I. Brauman, and B. Meunier, “Epoxidation of olefine by cytochrome P-450 model compounds,” J. Amer. Chem. Soc., 107, No. 7, 2000–2005 (1985).

    Article  Google Scholar 

  55. J. T. Groves, T. E. Nemo, and R. S. Myers, “Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene,” J. Amer. Chem. Soc., 101, 1032–1033 (1979).

    Article  Google Scholar 

  56. E. K. Barefield and M. T. Mocelle, “Mechanism of base promoted reduction of nickel(III) complexes of macrocyclic amines. Coordinated ligand radical intermediate,” J. Amer. Chem. Soc., 97, No. 15, 4238–4246 (1975).

    Article  Google Scholar 

  57. K. B. Yatsimirskii, “Redox properties of macrocyclic complexes of transitional metals,” Teoret. Eksper. Khim., 3, 280–285 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sinditskii.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 47, No. 1, pp. 42–51, January–February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinditskii, V.P., Egorshev, V.Y., Dutova, T.Y. et al. Combustion of derivatives of 1,5-diaminotetrazole. Combust Explos Shock Waves 47, 36–44 (2011). https://doi.org/10.1134/S0010508211010059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508211010059

Keywords

Navigation