Skip to main content
Log in

Analysis of Oscillatory Processes in the Cardiovascular System in Response to Local Heating in Patients with Type 2 Diabetes Mellitus

  • MEDICAL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comprehensive spectral analysis of heart rate variability and skin perfusion of the extremities in patients with type 2 diabetes mellitus in response to local heating and identification of significant predictors of pathophysiological changes in the cardiovascular system has been carried out. Electrocardiogram and skin perfusion on the forearm and foot were measured by laser Doppler flowmetry at rest and under local heating in healthy individuals and diabetic patients. The signals of laser Doppler flowmetry and heart rate variability (according to electrocardiographic data) were subjected to wavelet analysis. Receiver operating characteristic analysis was used to evaluate significant predictors. It was found that in patients, compared with healthy individuals, there was (1) a decrease in the reserve of cutaneous blood flow on the foot under heating, (2) a decrease in the amplitudes of heart rate oscillations at rest and under heating, (3) an increase in the amplitudes of oscillations of laser Doppler flowmetry signals on the forearm in respiratory intervals and cardiac intervals at rest and under heating, and (4) a decrease in the amplitudes of oscillations of laser Doppler flowmetry signals on the foot in the myogenic interval at rest and in the cardiac interval under heating. The parameters of the cardiovascular system (the energy of heart rate variability in the low frequency interval and oscillations of laser Doppler flowmetry signals on the forearm in respiratory interval, which can serve as markers for early diagnosis of microvascular disorders) with high discriminatory power to distinguish patients and healthy individuals in response to local heating were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. S. De Rosa, B. Arcidiacono, E. Chiefari, et al., Front. Endocrinol. (Lausanne) 9, 2 (2018).

    Article  PubMed  Google Scholar 

  2. I. Eleftheriadou, A. Tentolouris, P. Grigoropoulou, et al., J. Diabetes Its Complications 33, 165 (2019).

    Article  Google Scholar 

  3. I. V. Tikhonova, A. A. Grinevich, A. V. Tankanag, et al., Biophysics (Oxford) 67, 647 (2022).

    Article  CAS  Google Scholar 

  4. A. Adamska, A. Araszkiewicz, S. Pilacinski, et al., Microvasc. Res. 121, 46 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. J. L. Cracowski and M. Roustit, Compr. Physiol. 10, 1105 (2020).

    Article  PubMed  Google Scholar 

  6. A. A. Romanovsky, in Handbook of Clinical Neurology, Ed. by A. A. Romanovsky (Elsevier, Amsterdam, 2018), Vol. 156, p. 3.

  7. T. H. Chou and E. F. Coyle, Temperature (Austin) 10, 326 (2023).

    Article  PubMed  Google Scholar 

  8. J. M. Johnson, C. T. Minson, and D. L. Kellogg, Compr. Physiol. 4, 33 (2014).

    Article  PubMed  Google Scholar 

  9. G. P. Kenny, R. J. Sigal, and R. McGinn, Temperature (Austin) 3, 119 (2016).

    Article  PubMed  Google Scholar 

  10. D. D. Sandeman, C. A. Pym, E. M. Green, et al., Brit. Med. J. 302, 1122 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. F. Khan, T. A. Elhadd, S. A. Greene, et al., Diabetes Care 23, 215 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. I. Mizeva, E. Zharkikh, V. Dremin, et al., Microvasc. Res. 120, 13 (2018).

  13. J. Francisco and C. Renero, Med. Hypotheses, 176, 111086 (2023).

  14. A. Caselli, L. Uccioli, L. Khaodhiar, et al., Microvasc. Res. 66, 134 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. P. R. Vas, A. Q. Green, and G. Rayman, Diabetologia 55, 795 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. A. Parshakov, N. Zubareva, S. Podtaev, et al., Adv. Skin Wound Care 30, 158 (2017).

    Article  PubMed  Google Scholar 

  17. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation 93, 1043 (1996).

  18. J. E. Ortiz-Guzman, S. Molla-Casanova, O. J. Arias-Mutis, et al., J. Cardiovasc. Dev. Dis. 10, (2023).

  19. Y. K. Jan, Diagnostics (Basel) 12, (2022).

  20. S. Smith, P. Normahani, T. Lane, et al., Life (Basel) 12, 1185 (2022).

  21. I. V. Tikhonova, A. V. Tankanag, I. E. Guseva, et al., Biomed. Signal Process. Control 79, 104222 (2023).

  22. World Health Organization, https://www.who.int/health-topics/diabetes. Cited August 28, 2023.

  23. I. V. Tikhonova, A. A. Grinevich, I. E. Guseva, et al., Microcirculation 28, e12655 (2021).

  24. P. A. Oberg, T. Tenland and G. E. Nilsson, Acta Med. Scand., Suppl. 687, 17 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. A. W. Guy, J. F. Lehmann, and J. B. Stonebridge, Proc. IEEE 62, 55 (1974).

    Article  Google Scholar 

  26. J. M. Johnson, G. L. Brengelmann, and L. B. Rowell, J. Appl. Physiol. 41, 826 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. D. M. Keller, M. Sander, B. Stallknecht, et al., J. Physiol. 588 , 3799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. I. Heinonen, R. M. Brothers, J. Kemppainen, et al., J. Appl. Physiol. 111, 818 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Stefanovska, M. Bracic, and H. D. Kvernmo, IEEE Trans. Biomed. Eng. 46, 1230 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. A. Tankanag and N. Chemeris, Phys. Med. Biol. 53, 5967 (2008).

    Article  PubMed  Google Scholar 

  31. L. Li, S. Mac-Mary, J. M. Sainthillier, et al., Gerontology 52, 142 (2006).

    Article  PubMed  Google Scholar 

  32. I. V. Tikhonova, A. V. Tankanag, and N. K. Chemeris, Skin Res. Technol. 19, e174 (2013).

  33. K. Jin, Aging Dis. 10, 676 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. C. Aliani, E. Rossi, P. Francia, et al., Physiol. Meas. 42, 125002 (2021).

  35. A. I. Zherebtsova, V. V. Dremin, I. N. Makovik, et al., Front. Physiol. 10, 416 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Sorelli, P. Francia, L. Bocchi, et al., Microvasc. Res. 124, 91 (2019).

    Article  PubMed  Google Scholar 

  37. A. Gottsater, A. R. Ahlgren, S. Taimour, et al., Clin. Auton. Res. 16, 228 (2006).

    Article  PubMed  Google Scholar 

  38. S. C. de Moura-Tonello, A. Porta, A. Marchi, et al., PLoS One 11, e0148903 (2016).

  39. T. Benichou, B. Pereira, M. Mermillod, et al., PLoS One 13, e0195166 (2018).

  40. T. Mastantuono, M. Di Maro, M. Chiurazzi, et al., Transl. Med. UniSa. 15, 1 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. I. Kozlov, E. Zherebtsov, G. Masalygina, et al., Diagnostics (Basel) 11, 267 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank all participants of the study (healthy volunteers and patients).

Funding

The work was supported by the Russian Science Foundation, project no. 22-15-00215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grinevich.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was conducted in accordance with the principles of the Helsinki Declaration of the World Medical Association (2013) and the protocol of the Local Ethics Committee of the Hospital of the Pushchino Scientific Center of the Russian Academy of Sciences no. 2 dated October 4, 2014. All subjects gave voluntary written informed consent to participate in the study after receiving explanations about the potential risks and benefits, as well as the nature of the upcoming study.

Additional information

Translated by E. Puchkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: DM2T, type 2 diabetes mellitus; CVS, cardiovascular system; HRV, heart rate variability; ECG, electrocardiogram; LDF, laser Doppler flowmetry; MI, microcirculation index; RCBF, reserve of cutaneous blood flow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, I.V., Tankanag, A.V., Guseva, I.E. et al. Analysis of Oscillatory Processes in the Cardiovascular System in Response to Local Heating in Patients with Type 2 Diabetes Mellitus. BIOPHYSICS 68, 1076–1084 (2023). https://doi.org/10.1134/S0006350923060180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350923060180

Keywords:

Navigation