Skip to main content
Log in

Non-Equivalence of Monomers in the Dimeric Structure of a Bacterial Photoactivated Adenylyl Cyclase

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Full-atom 3D models of dimer complexes of a bacterial photoactivated adenylyl cyclase with the photoreceptor domain in dark and light states were constructed. The results of molecular dynamics simulation demonstrated that the geometry of monomers in the dimeric complexes was not the same. It was not affected by the state of each monomer. With the dynamical network analysis, the signal transduction pathways from the receptor domain to catalytic domain within and between monomers were analyzed and the functional non-equivalence of monomers was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. Ya. Fraikin, M. G. Strakhovskaya, N. S. Belenikina, and A. B. Rubin, Mikrobiologiya 84, 391 (2015).

    Google Scholar 

  2. M. Gomelsky and G. Klug, Trends Biochem. Sci. 27, 497 (2002).

    Article  Google Scholar 

  3. C. Bonetti, M. Stierl, T. Mathes, et al., Biochemistry 48, 11458 (2009).

    Article  Google Scholar 

  4. T. Domratcheva, B. L. Grigorenko, I. Schlichting, and A. V. Nemukhin, Biophys. J. 94, 3872 (2008).

    Article  ADS  Google Scholar 

  5. B. L. Grigorenko, M. G. Khrenova, and A. V. Nemukhin, Phys. Chem. Chem. Phys. 20, 23827 (2018).

    Article  Google Scholar 

  6. M. G. Khrenova, A. M. Kulakova, and A. V. Nemukhin, J. Chem. Inf. Model. 61, 1215 (2021).

    Article  Google Scholar 

  7. A. M. Kulakova, M. G. Khrenova, and A. V. Nemukhin, Russ. Chem. Bull. 68, 1991 (2019).

  8. R. Lindner, E. Hartmann, M. Tarnawski, et al., J. Mol. Biol. 429, 1336 (2017).

    Article  Google Scholar 

  9. E. D. Kots, M. G. Khrenova, S. V. Lushchekina, et al., J. Phys. Chem. B 120, 4221 (2016).

    Article  Google Scholar 

  10. E. D. Kots, S. V. Lushchekina, S. D. Varfolomeev, and A. V. Nemukhin, J. Chem. Inf. Model. 57, 1999 (2017).

    Article  Google Scholar 

  11. J. H. Brown, Protein Sci. 15, 1 (2006).

    Article  Google Scholar 

  12. R. Godoy-Ruiz, A. Krejcirikova, D. T. Gallagher, and V. Tugarinov, J. Am. Chem. Soc. 133, 19578 (2011).

    Article  Google Scholar 

  13. L. Dong, N. P. Sharma, B. J. Jurban, and W. L. Smith, J. Biol. Chem. 288, 28641 (2013).

    Article  Google Scholar 

  14. G. Maksay and O. Tőke, Prog. Biophys. Mol. Biol. 114, 153 (2014).

    Article  Google Scholar 

  15. G. Maksay and J. A. Marsh, Biochem. Soc. Trans. 45, 599 (2017).

    Article  Google Scholar 

  16. S. Kleinboelting, J. van den Heuvel, and C. Steegborn, FEBS J. 281, 4151 (2014).

    Article  Google Scholar 

  17. J. J. G. Tesmer, R. K. Sunahara, A. G. Gilman, and S. R. Sprang, Science 278, 1907 (1997).

    Article  ADS  Google Scholar 

  18. J. C. Phillips, R. Braun, W. Wang, et al., J. Comput. Chem. 26, 1781 (2005).

    Article  Google Scholar 

  19. R. B. Best, X. Zhu, J. Shim, et al., J. Chem. Theory Comput. 8, 3257 (2012).

    Article  Google Scholar 

  20. K. Vanommeslaeghe, E. Hatcher, C. Acharya, et al., J. Comput. Chem. 31, 671 (2009).

    Google Scholar 

  21. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  22. M. G. Khrenova, Y. I. Meteleshko, and A. V. Nemukhin, J. Phys. Chem. B 121, 10018 (2017).

    Article  Google Scholar 

  23. M. G. Khrenova, T. Domratcheva, I. Schlichting, et al., Photochem. Photobiol. 87, 564 (2011).

    Article  Google Scholar 

  24. A. Sethi, J. Eargle, A. A. Black, and Z. Luthey-Schulten, Proc. Natl. Acad. Sci. U. S. A. 106, 6620 (2009).

    Article  ADS  Google Scholar 

  25. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  Google Scholar 

  26. N. M. Glykos, J. Comput. Chem. 27, 1765 (2006).

    Article  Google Scholar 

  27. V. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., Supercomput. Front. Innovation 6 (2), 4 (2019).

Download references

ACKNOWLEDGMENTS

The calculations were performed using the equipment of the Supercomputing Center of Moscow State University [27].

Funding

This work was financially supported by the Russian Science Foundation (project no. 19-73-20032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nemukhin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Additional information

Translated by D. Timchenko

Abbreviations: BLUF, blue light using flavin; FMN, flavin mononucleotide; bPAC, bacterial photoactivated adenylyl cyclase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, A.M., Khrenova, M.G. & Nemukhin, A.V. Non-Equivalence of Monomers in the Dimeric Structure of a Bacterial Photoactivated Adenylyl Cyclase. BIOPHYSICS 67, 895–901 (2022). https://doi.org/10.1134/S0006350922060112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060112

Keywords:

Navigation