Skip to main content
Log in

Specific and Nonspecific Interactions of Yersinia pseudotuberculosis Lipopolysaccharide with Monoclonal Antibodies Assessed by Atomic Force Microscopy

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Atomic force microscopy was used to evaluate the rupture force between a probe functionalized with the lipopolysaccharide from Yersinia pseudotuberculosis and monoclonal antibodies immobilized on mica as well as the contribution of non-specific factors to such interaction. There were no strongly indicated interactions between the “clean” probe and the treated or “clean” mica. When the last one was modified with (3-aminopropyl)triethoxysilane (APTES), the interaction force increased becoming even greater if the aminated mica was treated with glutaraldehyde. Subsequent immobilization of monoclonal antibodies on the APTES and glutaraldehyde-coated mica weakened the interaction dramatically, which was much less pronounced when complementary monoclonal antibodies used in comparison with heterologous ones. The specific interaction between antibodies and aggregation-prone antigens (e.g. lipopolysaccharides) may not exceed the nonspecific one mediated by “disaggregation,” ”unfolding” of the surface-immobilized molecular agglomerates on the probe and mica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. T. Nandi and S. R. K. Ainavarapu, Emerging Top. Life Sci. 5, 103 (2021).

    Google Scholar 

  2. M. Y. Amarouch, J. El Hilaly, and D. Mazouzi, Scanning 2018, 7801274 (2018).

    Article  Google Scholar 

  3. S. Liu and Y. Wang, Scanning 32, 61 (2010).

    Article  Google Scholar 

  4. Z. Bednarikova, Z. Gazova, F. Valle, and E. Bystrenova, J. Microsc. 280, 241 (2020).

    Article  Google Scholar 

  5. C. Lo Giudice, A. C. Dumitru, and D. Alsteens, Anal. Bioanal. Chem. 411, 6549 (2019).

    Article  Google Scholar 

  6. L. S. Dorobantu and M. R. Gray, Scanning 32, 74 (2010).

    Article  Google Scholar 

  7. C. Formosa-Dague, M. Castelain, H. Martin-Yken, et al., Microorganisms 6, 39 (2018).

    Article  Google Scholar 

  8. E. V. Sidorin and T. F. Solov’eva, Biochemistry (Moscow) 76, 295 (2011).

    Article  Google Scholar 

  9. J. Israelachvili, Q. Rev. Biophys. 38, 331 (2005).

    Article  Google Scholar 

  10. A. Elbourne, J. Chapman, A. Gelmi, et al., J. Colloid Interface Sci. 546, 192 (2019).

    Article  ADS  Google Scholar 

  11. T. S. Tsapikouni and Y. F. Missirlis, Colloids Surf., B 75, 252 (2010).

    Article  Google Scholar 

  12. O. H. Willemsen, M. M. Snel, K. O. van der Werfs, et al., Biophys. J. 75, 2220 (1998).

    Article  Google Scholar 

  13. L. Chih-Kung, W. Yu-Ming, H. Long-Sun, and L. Shiming, Micron 38, 446 (2007).

    Article  Google Scholar 

  14. M. Utjesanovic, T. R. Matin, K. P. Sigdel, et al., Sci. Rep. 9, 451 (2019).

    Article  ADS  Google Scholar 

  15. C. T. Lim, E. H. Zhou, A. Li, et al., Mater. Sci. Eng. 26, 1278 (2006).

    Article  Google Scholar 

  16. M. Targosz, P. Czuba, R. Biedron, et al., Acta Phys. Pol., A 109, 421 (2005).

    Article  ADS  Google Scholar 

  17. E. Brzozowska, A. Leśniewski, S. Sęk, et al., Sci. Rep. 8, 10935 (2018).

    Article  ADS  Google Scholar 

  18. I. V. Safenkova, A. V. Zherdev, and B. B. Dzantiev, Usp. Biol. Khim. 52, 281 (2012).

    Google Scholar 

  19. A. Beaussart and S. El-Kirat-Chatel, Cell Surf. 5, 100031 (2019).

    Article  Google Scholar 

  20. Y. Wang, J. Wang, J. Sun, et al., J. Nanosci. Nanotechnol. 19, 7584 (2019).

    Article  Google Scholar 

  21. S. Ramezanian, H. X. Ta, B. Muhunthan, and N. Abu-Lail, Biointerphases 13, 041005 (2018).

    Article  Google Scholar 

  22. M. M. Elmahdy, A. Drechsler, C. Gutsche, et al., Langmuir 25, 12894 (2009).

    Article  Google Scholar 

  23. E. Celik and V. T. Moy, J. Mol. Recognit. 25, 53 (2012).

    Article  Google Scholar 

  24. J. R. King, C. M. Bowers, and E. J. Toone, Langmuir 31, 3431 (2015).

    Article  Google Scholar 

  25. J. Wakayama, H. Sekiguchi, S. Akanuma, et al., Anal. Biochem. 380, 51 (2008).

    Article  Google Scholar 

  26. O. Westphal and K. Jann, Methods Carbohydr. Chem. 5, 83 (1965).

    Google Scholar 

  27. A. A. Byvalov, L. G. Dudina, S. G. Litvinets, et al., Appl. Bioche. Microbiol. 50, 179 (2014).

  28. A. A. Byvalov, L. G. Dudina, A. V. Chernyad’ev, et al., Genet., Microbiol. Virol. 30, 93 (2015).

  29. H. He, J. Zhang, J. Yang, and F. Yang, Microsyst. Technol. 23, 1799 (2017).

    Article  Google Scholar 

  30. S. Kim, H. K. Christenson, and J. E. Curry, Langmuir 18, 2125 (2002).

    Article  Google Scholar 

  31. A. Ebner, L. Wildling, and H. J. Gruber, Methods Mol. Biol. 1886, 117 (2019).

    Article  Google Scholar 

  32. B. Ananchenko, V. Belozerov, A. Byvalov, et al., Int. J. Biol. Macromol. 156, 841 (2020).

    Article  Google Scholar 

  33. ISO 4287: 2000, Geometrical product specification (GPS). Surface texture. Profile method. Terms, definitions and surface texture parameters, International Organization of Standardization.

  34. N. C. Santos, A. C. Silva, M. A. Castanho, et al., Chembiochem. 4, 96 (2003).

    Article  Google Scholar 

  35. Q. Lu, J. Wang, A. Faghihnejad, et al., Soft Matter 7, 9366 (2011).

    Article  ADS  Google Scholar 

  36. I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, Biotechniques 37, 790 (2004).

    Article  Google Scholar 

  37. R. Popeski-Dimovski, Carbohydr. Polym. 123, 146 (2015).

    Article  Google Scholar 

  38. H. Gao, X. X. Zhang, and W. B. Chang, Front. Biosci. 10, 1539 (2005).

    Article  Google Scholar 

  39. Y. Wang, J. Wang, S. Huang, et al., Int. J. Biol. Macromol. 134, 28 (2019).

    Article  Google Scholar 

  40. C. Wang, J. Wang, and L. Deng, Nanoscale Res. Lett. 6, 579 (2011).

    Article  ADS  Google Scholar 

  41. H. J. Butta, B. Cappella, and M. Kappl, Surf. Sci. Rep. 59, 1 (2005).

    Article  ADS  Google Scholar 

  42. W. Kaca, J. Gleńska-Olender, I. Konieczna, et al., Methods Mol. Biol. 2021, 273 (2019).

    Article  Google Scholar 

Download references

Funding

This research was carried out with the financial support of the Russian Foundation for Basic Research, project no. 20-34-90013, as well as a grant from the president of the Russian Federation for State Support of Young Russian Scientists-Candidates of Sciences, project no. MK-3383.2021.1.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Byvalov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors..

Additional information

Translated by E. Puchkov

Abbreviations: AFM, atomic force microscopy; LPS, lipopolysaccharide; mAb, monoclonal antibodies; APTES, (3-aminopropyl)triethoxysilane; GA, glutaraldehyde; PBS, phosphate buffer solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byvalov, A.A., Belozerov, V.S., Ananchenko, B.A. et al. Specific and Nonspecific Interactions of Yersinia pseudotuberculosis Lipopolysaccharide with Monoclonal Antibodies Assessed by Atomic Force Microscopy. BIOPHYSICS 67, 856–866 (2022). https://doi.org/10.1134/S0006350922060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922060033

Keywords:

Navigation