Skip to main content
Log in

Quercetin and its Complex with Cyclodextrin against Oxidative Damage of Mitochondria and Erythrocytes: Experimental Results in vitro and Quantum-Chemical Calculations

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—In this work, we compared the efficacy of quercetin, one of the best known and widely investigated flavonoids, and the inclusion complex of quercetin and hydroxypropyl−β-cyclodextrin in prevention of disturbances in redox balance of rat liver mitochondria and erythrocytes during oxidative stress and regulation of the process of the mitochondrial permeability transition pore formations in vitro and theoretically calculated the structure of quercetin and its oxidative forms, as well as their molecular electronic properties. Quercetin (5–100 μM) inhibited membrane lipid peroxidation and reduced glutathione oxidation dose dependently in both rat liver mitochondria and erythrocytes during exposure to tert-butyl hydroperoxide (700 μM). Simultaneously, quercetin (25 μM) stimulated the Ca2+-induced mitochondrial permeability transition pore formations and inhibited this process at higher concentrations (100 mM). The incorporation of quercetin in the supramolecular complex with hydroxypropyl−β-cyclodextrin enhanced its antioxidative activity, first of all, in the cytoplasm of the cell and mitochondrial matrix. Molecules of quercetin, semiquinone radicals, and stable products formed in the oxidation, ortho- and p-quinone methide, have a planar structure. The calculated value of the dipole moment of the quercetin molecule is 4.34 D. The quercetin molecule is thermodynamically more stable than the products of its oxidation, among which p-quinone methide-III is the most stable form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Tarakhovskii, Yu. A. Kim, B. S. Abdrasilov, and E. N. Muzafarov, Flavonoids: Biochermistry, Biology, Biophysics, Medicine (Synchrobook, Pushchino, 2013) [in Russian].

    Google Scholar 

  2. C. Boydens, B. Pauwels, L. van den Daele, and J. van de Voorde, J. Cardiovasc Diabetol. 18, 15 (2016).

    Google Scholar 

  3. B. Halliwell, Arch. Biochem. Biophys. 476, 107 (2008).

    Article  Google Scholar 

  4. J. Morales, G. Günther, A. L. Zanocco, and E. Lemp, PLoS One 7, e40548 (2012).

    Article  ADS  Google Scholar 

  5. A. M. Mendoza-Wilson, R. R. Sotello-Mundo, R. R. Balandran-Quintana, et al., J. Mol. Struct. 981, 187 (2010).

    Article  ADS  Google Scholar 

  6. V. Buko, B. Palecz, S. Belica-Pacha, and I. Zavodnik, in Nano- and Microscale Drug Delivery Systems: Design and Fabrication, Ed. by A. Grumezescu (Elsevier, Amsterdam, 2017), pp. 343–356.

    Google Scholar 

  7. B. Liu, W. Li, T. A. Nguyen, and J. Zhao, Food Chem. 134, 926 (2012).

    Article  Google Scholar 

  8. I. M. Savic, V. D. Nikolic, L. B. Nikolic, et al., J. Incl. Phenom. Macrocycl. Chem. 80, 383 (2015).

    Article  Google Scholar 

  9. C. Lucas-Abellan, I. Fortea, J. A. Gabaldon, and E. Nunes-Delicado, J. Agric. Food Chem. 56, 255 (2008).

    Article  Google Scholar 

  10. C. G. M. Heijnen, G. R. Haenen, F. A. van Acker, et al., Toxicol. in Vitro 15, 3 (2001).

    Article  Google Scholar 

  11. D. Metodiewa, A. K. Jaiswal, N. Cenas, et al., Free Radic. Biol. Med. 26, 107 (1999).

    Article  Google Scholar 

  12. S. Schaffer, H. Asseburg, S. Kuntz, et al., Mol. Neurobiol. 46 (1), 161 (2012).

    Article  Google Scholar 

  13. C. Sandoval-Acuca, J. Ferreira, and H. Speisky, Arch. Biochem. Biophys. 559, 75 (2014).

    Article  Google Scholar 

  14. R. Ortega and N. García, J. Bioenerg. Biomembr. 41 (1), 41 (2009).

    Article  Google Scholar 

  15. A. J. Kowaltowski, R. F. Castilho, and A. E. Vercesi, FEBS Lett. 495, 12 (2001).

    Article  Google Scholar 

  16. U. De Marchi, L. Biasutto, S. Garbisa, et al., Biochim. Biophys. Acta 1787 (12), 1425 (2009).

    Article  Google Scholar 

  17. D. Johnson and H. A. Lardy, Methods Enzymol. 10, 94 (1967).

    Article  Google Scholar 

  18. A. P. Richardson and A. P. Halestrap, Biochem. J. 473 (9), 1129 (2016).

    Article  Google Scholar 

  19. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  20. J. Stocks and T. L. Dormandy, Br. J. Haematol. 20 (1), 95 (1971).

    Article  Google Scholar 

  21. J. Ellman, Arch. Biochem. Biophys. 82, 70 (1959).

    Article  Google Scholar 

  22. S. Erkoc, F. Erkoc, and N. Keskin, J. Mol. Struct. (Theochem.) 631, 141(2003)

    Article  Google Scholar 

  23. B. F. Rasulev, N. D. Abdullaev, V. N. Syrov, and J. Leszczynski, QSAR Comb. Sci. 24 (9), 1056 (2005).

    Article  Google Scholar 

  24. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Free Radic. Biol. Med. 20, 933 (1996).

    Article  Google Scholar 

  25. A. M. Mendoza-Wilson, H. Santacruz-Ortega, and R. R. Balandrán-Quintana, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 81, 481 (2011).

    Article  ADS  Google Scholar 

  26. H. M. Awad, M. G. Boersma, J. Vervoort, and I. M. Rietjens, Arch. Biochem. Biophys. 378, 224 (2000).

    Article  Google Scholar 

  27. I. M. Rietjens, M. G. Boersma, L. D. Haan, et al., Environ. Toxicol. Pharmacol. 11, 321 (2002).

    Article  Google Scholar 

  28. T. A. Nguyen, B. Liu, J. Zhao, et al., Food Chem. 136, 186 (2013)

    Article  Google Scholar 

  29. L. I. Oleinik, T. S. Buslova, I. A. Veselova, and T. N. Shekhovtsova, Moscow Univ. Chem. Bull. 66 (3), 166 (2011).

    Article  Google Scholar 

  30. S. V. Gushchina, V. M. Kosman, and I. G. Zenkevich, Vestn. S.-Peterb. Gos. Univ. 4 (1), 94 (2009).

    Google Scholar 

  31. H. Jacobs, M. Moalin, A. Bast, et al., PLoS One 5 (11), 1 (2010)

    Article  Google Scholar 

  32. E. Osorio, E. G. Pérez, C. Areche, et al., J. Mol. Model. 19, 2156 (2013)

    Article  Google Scholar 

  33. H. M. Awad, M. G. Boersma, S. Boeren, et al., FEBS Lett. 520, 30 (2002).

    Article  Google Scholar 

  34. C. G. Heijnen, G. R. Haenen, R. M. Oostveen, et al., Free Radic. Res. 36 (5), 575 (2002).

    Article  Google Scholar 

  35. R. Lagoa, I. Graziani, C. Lopez-Sanchez, et al., Biochim. Biophys. Acta 1807, 1562 (2011).

    Article  Google Scholar 

  36. M. Fiorani, A. Guidarelli, M. Blasa, et al., Nutr. Biochem. 21, 397 (2010).

    Article  Google Scholar 

  37. L. Ziberna, K. Jong-Hun, C. Auger, et al., Food Funct. 3, 1452 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Zavodnik.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyich, T.V., Veiko, A.G., Lapshina, E.A. et al. Quercetin and its Complex with Cyclodextrin against Oxidative Damage of Mitochondria and Erythrocytes: Experimental Results in vitro and Quantum-Chemical Calculations. BIOPHYSICS 63, 537–548 (2018). https://doi.org/10.1134/S0006350918040073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040073

Navigation