Skip to main content
Log in

The Hypoxia Signal as a Potential Inducer of Supercomplex Formation in the Oxidative Phosphorylation System of Heart Mitochondria

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A correlation between the transition of the oxidative phosphorylation system into a supercomplex state and a change of the functional state of mitochondrial energetics upon the transition from aerobic respiration to hypoxic conditions has been established for the first time. The effect was observed by two different methods in liver and heart mitochondria. The occurrence of highly ordered structures in the membranes of heart mitochondria under hypoxic conditions has been detected by small-angle neutron scattering and electron microscopy during the transition of oxidative phosphorylation into the supercomplex state. The structural parameters of cristae inferred from the data of small-angle neutron scattering and electron microscopy have been compared. The results of measurements using the two methods coincided. Successive exposure to hypoxia and weak osmotic stress signals showed a qualitative difference between these signals. Successive exposure to two signals, with hypoxia as the first one and weak osmotic stress as the second one, was shown to cause impairment of mitochondrial integrity. The effect was observed by small-angle neutron scattering and electron microscopy. Thus, we demonstrated the existence of two qualitatively different signals (hypoxia and osmotic stress), which altered the oxidative phosphorylation system and induced its transition into the supercomplex state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. S. Moiseeva, T. N. Murugova, I. M. Vangeli, and I. M. Byvshev, Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 11 (4), 321 (2017).

    Google Scholar 

  2. I. P. Krasinskaya, V. N. Marshansky, S. F. Dragunova, and L. S. Yaguzhinsky, FEBS Lett. 167, 176 (1984).

    Article  Google Scholar 

  3. D. Johnson and H. Lardy, in Methods in Enzymology (Elsevier, 1967), pp. 94–96.

    Google Scholar 

  4. C. Watters, Anal. Biochem. 88, 695 (1978).

    Article  Google Scholar 

  5. B. Chance and G. R. Williams, J. Biol. Chem. 217, 409 (1955).

    Google Scholar 

  6. A. I. Kuklin, A. K. Islamov, and V. I. Gordeliy, Neutron News 16, 16 (2005).

    Article  Google Scholar 

  7. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Biophysics (Moscow) 51, 882 (2006).

    Article  Google Scholar 

  8. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, et al., J. Physics: Conf. Series 848 (1), 012020 (2017).

    Google Scholar 

  9. T. N. Murugova, I. M. Solodovnikova, V. I. Yurkov, et al., Neutron News 22, 11 (2011).

    Article  Google Scholar 

  10. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Crystallogr. Rep. 52, 521 (2007).

    Article  ADS  Google Scholar 

  11. E. S. Reynolds, J. Cell Biol. 17, 208 (1963).

    Article  Google Scholar 

  12. J. C. Fiala and K. M. Harris, J. Am. Med. Inform. Assoc. 8, 1 (2001).

    Article  Google Scholar 

  13. D. Faccenda, J. Nakamura, G. Gorini, et al., Cell Rep. 18, 1869 (2017).

    Article  Google Scholar 

  14. K. M. Davies, M. Strauss, B. Daum, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 14121 (2011).

    Article  ADS  Google Scholar 

  15. W. Kühlbrandt, BMC Biol. 13, (2015).

  16. A. W. Mühleip, C. E. Dewar, A. Schnaufer, et al., Proc. Natl. Acad. Sci. U. S. A. 114, 992 (2017).

  17. A. W. Mühleip, F. Joos, C. Wigge, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 8442 (2016).

  18. H. Baum, G. S. Hall, J. Nalder, and R. B. Beechey, in Energy Transduction in Respiration and Photosynthesis, Ed. by E. Quagliariello, S. Papa, and G. S. Rossi (Adriatica Editrice, Bari, 1971), pp. 747–755.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support for this study was provided by the Russian Foundation for Basic Research (grant no. 16-04-01043) and the Russian Science Foundation (grant no. 14-24-00107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Byvshev.

Additional information

Translated by S. Semenova

Abbreviations: OXPHOS, oxidative phosphorylation; ANT, adenine nucleotide translocator; SANS, small-angle neutron scattering; EM, electron microscopy; CATR, carboxyatractyloside; SDH, succinate dehydrogenase; SMP, submitochondrial particle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byvshev, I.M., Murugova, T.N., Ivankov, A.I. et al. The Hypoxia Signal as a Potential Inducer of Supercomplex Formation in the Oxidative Phosphorylation System of Heart Mitochondria. BIOPHYSICS 63, 549–560 (2018). https://doi.org/10.1134/S0006350918040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040048

Keywords:

Navigation