Skip to main content
Log in

Functionally significant low-temperature structural alterations in mitochondrial membranes of homoiothermic animals

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This work is focused on the physicochemical nature and functional meaning of structural alterations in mitochondrial membranes. These alterations are observed at subnormal temperatures for homeothermic animals. Using pyrene as a fluorescent probe, some structural transitions in annular lipids were detected at 19 and 25°C, which are identified as the pre-transition and main phase transition temperatures. The observed changes are consistent with abrupt alterations in the efficiency of tryptophan fluorescence quenching by pyrene that occur at the same temperatures. The data imply considerable changes in the protein–lipid contact area. The effects are observed under low-amplitude mitochondrial swelling in media with lowered tonicity. Since the transition of the phosphorylating system into the supercomplex state has been previously shown under these conditions, it allows us to assume a relationship between the observed membrane structural alterations and the supercomplex formation. Measurements of the respiration rate in mitochondria in a hypoosmotic medium show that the activation energy of the rate-limiting step in the process of ATP synthesis changes abruptly at the temperature of the phase transition of annular lipids (25°C). Analysis of the literature data indicates that a similar abnormal low-temperature abrupt change in activation energy in the reaction of ATP synthesis around 25°C is observed for a variety of animal species. Hence, the low-temperature structural alterations in membranes of warm-blooded animals should have general biological importance. A comparison of the results obtained in our study and the literature data led, therefore, to a qualitative description of the physiochemical nature of the observed membrane alterations. Similar to the membrane-raft model, a model of supercomplex formation in mitochondria is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Krasinskaya, I. S. Litvinov, S. D. Zakharov, et al., Biokhimiya (Moscow) 54 (9), 1550 (1989).

    Google Scholar 

  2. D. J. Pehowich et al., Biochemistry (Moscow) 27 (13), 4632 (1988).

    Article  Google Scholar 

  3. T. N. Murugova, V. I. Gordeliy, A. I. Kuklin, et al., Biophysics 51 (6), 882 (2006).

    Article  Google Scholar 

  4. I. P. Krasinskaya, V. N. Marshansky, S. F. Dragunova, and L. S. Yaguzhinsky, FEBS Lett. 167 (1), 176 (1984).

    Article  Google Scholar 

  5. P. Mitchell, Nature 191, 144 (1961).

    Article  ADS  Google Scholar 

  6. R. J. P. Williams, J. Theor. Biol. 1 (1), 1 (1961).

    Article  MathSciNet  Google Scholar 

  7. A. P. Halestrap, Biochim. Biophys. Acta 973 (3), 355 (1989).

    Article  Google Scholar 

  8. J. K. Raison and E. J. McMurchie, Biochim. Biophys. Acta 363 (2), 135 (1974).

    Article  Google Scholar 

  9. E. J. McMurchie and J. K. Raison, Biochim. Biophys. Acta 554 (2), 364 (1979).

    Article  Google Scholar 

  10. F. Geiser and E. J. McMurchie, J. Comp. Physiol. B 155 (6), 711 (1985).

    Article  Google Scholar 

  11. E. J. McMurchie, J. K. Raison, and K. D. Cairncross, Comp. Biochem. Physiol. B 44 (4), 1017 (1973).

    Google Scholar 

  12. H. J. Galla and W. Hartmann, Chem. Phys. Lipids 27 (3), 199 (1980).

    Article  Google Scholar 

  13. M. Dembo, et al., Biochim. Biophys. Acta 552 (2), 201 (1979).

    Article  Google Scholar 

  14. H. J. Galla and E. Sackmann, Biochim. Biophys. Acta 339 (1), 103 (1974).

    Article  Google Scholar 

  15. N. L. Vekshin, in Photonics of Biopolymers (Springer, Berlin, 2002), pp. 165–171.

    Book  Google Scholar 

  16. R. L. Melnick, H. C. Haspel, M. Goldenberg, et al., Biophys. J. 34 (3), 499 (1981).

    Article  Google Scholar 

  17. J. Y. Lehtonen, J. M. Holopainen, and P. K. Kinnunen, Biophys. J. 70 (4), 1753 (1996).

    Article  ADS  Google Scholar 

  18. A. D. Dergunov, A. S. Kaprel’iants, and D. N. Ostrovskii, Biokhimiya (Moscow) 46 (8), 1499 (1981).

    Google Scholar 

  19. I. S. Litvinov and V. V. Obraztsov, Biofizika 27 (1), 81 (1982).

    Google Scholar 

  20. J. K. Raison, J. M. Lyons, and W. W. Thomson, Arch. Biochem. Biophys. 142 (1), 83 (1971).

    Article  Google Scholar 

  21. H. M. Levy, N. Sharon, E. M. Ryan, and D. E. Koshland, Jr., Biochim. Biophys. Acta 56, 118 (1962).

    Article  Google Scholar 

  22. K. A. Riske, R. P. Barroso, C. C. Vequi-Suplicy, et al., Biochim. Biophys. Acta 1788 (5), 954 (2009).

    Article  Google Scholar 

  23. T. Kaasgaard, C. Leidy, J. H. Crowe, et al., Biophys. J. 85 (1), 350 (2003).

    Article  Google Scholar 

  24. L. Picas, M. T. Montero, A. Morros, et al., J. Fluoresc. 17 (6), 649 (2007).

    Article  Google Scholar 

  25. H. Pfeiffer, H. Binder, G. Klose, and K. Heremans, Biochim. Biophys. Acta 1609 (2), 148 (2003).

    Article  Google Scholar 

  26. K. Oglecka, P. Rangamani, B. Liederberg, et al., E-life 3, e03695 (2014). doi 10.7554/eLife.03695

    Google Scholar 

  27. W. R. Perkins, X. Li, J. L. Slater, et al., Biochim. Biophys. Acta 1327 (1), 41 (1997).

    Article  Google Scholar 

  28. G. P. Gorbenko, V. M. Trusova, J. L. Molotkovsky, et al., Biochim. Biophys. Acta 1788 (6), 1358 (2009).

    Article  Google Scholar 

  29. I. Levental and S. L. Veatch, J. Mol. Biol. 428, 4749 (2016). doi 10.1016/j.jmb.2016.08.022

    Article  Google Scholar 

  30. M. Carquin, L. D’Auria, H. Pollet, et al., Prog. Lipid Res. 62, 1 (2016).

    Article  Google Scholar 

  31. J. Y. Lehtonen and P. K. Kinnunen, Biophys. J. 72 (3), 1247 (1997).

    Article  ADS  Google Scholar 

  32. C. Suárez-Germà, L. M. S. Loura, M. Prieto, et al., J. Phys. Chem. B (8), 2438 (2012).

    Article  Google Scholar 

  33. B. Piknová, T. Hianik, V. N. Shestimirov, et al., Gen. Physiol. Biophys. 10 (4), 395 (1991).

    Google Scholar 

  34. S. V. Nesterov, Y. A. Skorobogatova, and L. S. Yaguzhinsky, Biophysics (Moscow) 59 (6), 904 (2014).

    Article  Google Scholar 

  35. V. Luzzati and F. Husson, J. Cell Biol. 12, 207 (1962).

    Article  Google Scholar 

  36. L. M. Gordon, R. D. Sauerheber, J. A, Esgate, et al., J. Biol. Chem. 255 (10), 4519 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Yaguzhinsky.

Additional information

Original Russian Text © L.S. Yaguzhinsky, Y.A. Skorobogatova, S.V. Nesterov, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 518–524.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaguzhinsky, L.S., Skorobogatova, Y.A. & Nesterov, S.V. Functionally significant low-temperature structural alterations in mitochondrial membranes of homoiothermic animals. BIOPHYSICS 62, 415–420 (2017). https://doi.org/10.1134/S0006350917030241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917030241

Keywords

Navigation