Skip to main content
Log in

Hydration effects accompanying the formation of DNA complexes with some ligands

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In the range of millimeter wavelengths the dielectric properties of aqueous solutions of some biologically active ligands (potential anticarcinogen chlorophyllin; pharmacological drug caffeine; polyamine putrescine; mutagens proflavine and ethidium bromide; actinocin derivative, an analogue of antitumor antibiotic actinomycin D) and DNA complexes with these substances were studied. It was shown that complex formation is accompanied by the change in dielectric properties of the solution. These changes during interaction of DNA with the first three compounds correspond to a decrease in hydration (compared with the total hydration of free components), and in other cases they cause an increase in hydration. The number of water molecules bound with both the ligand and DNA nucleotide in the complex was estimated. The results were compared with existing models of DNA interaction with the studied substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Nechipurenko, Biophysics (Moscow) 59 (1), 6 (2014).

    Article  Google Scholar 

  2. R. Palchaudhuri and P. J. Hergenrother, Curr. Opin. Biotechnol. 18 (6), 497 (2007).

    Article  Google Scholar 

  3. L. B. Hendry, V. B. Mahesh, E. D. Bransome, and D. E. Ewing, Mutat. Res. 623 (1–2), 53 (2007).

    Article  Google Scholar 

  4. M. D. Faddeeva and T. N. Belyaeva, Tsitologiya 33 (10), 3 (1991).

    Google Scholar 

  5. L. R. Ferguson and W. A. Denny, Mutat. Res. 623 (1–2), 14 (2007).

    Article  Google Scholar 

  6. H. H. Li, J. Aubrecht, and A. J. Fornace, Jr., Mutat. Res. 623(1–2), 98 (2007).

    Article  Google Scholar 

  7. S. U. Rehman, T. Sarwar, M. A. Husain, et al., Arch. Biochem. Biophys. 576, 49 (2015).

    Article  Google Scholar 

  8. L. Strekowski and B. Wilson, Mutat. Res. 623 (1–2), 3 (2007).

    Article  Google Scholar 

  9. E. G. Bereznyak, E. V. Dukhopelnikov, N. A. Gladkovskaya, et al., Thermodynamics of Ligand Complexation with Nucleic Acids (Infra-M, Moscow, 2015) [in Russian].

    Google Scholar 

  10. H. Yu, J. Ren, J. B. Chaires, and X. Qu, J. Med. Chem. 51, 5909 (2008).

    Article  Google Scholar 

  11. J. R. Neto and M. F. Colombo, Biopolymers 53 (1), 46 (2000).

    Article  Google Scholar 

  12. E. D. Kudryashov, V. A. Buckin, F. I. Braginskaya, and L. A. Marky, Biophysics (Moscow) 43 (1), 32 (1998).

    Google Scholar 

  13. X. Qu and J. B. Chaires, J. Am. Chem. Soc. 123, 1 (2001).

    Article  Google Scholar 

  14. V. V. Kostyukov, N. M. Khomutova, and E. P. Evstigneev, Biopolim. Kletka 26 (1), 36 (2010).

    Google Scholar 

  15. X. Shi and R. B. J. Macgregor, Biophys. Chem. 125, 471 (2007).

    Article  Google Scholar 

  16. F. Han and T. V. Chalikian, J. Am. Chem. Soc. 125, 7219 (2003).

    Article  Google Scholar 

  17. R. L. Mancera, Curr. Opin. Drug Discov. 10 (3), 275 (2007).

    Google Scholar 

  18. A. V. Shestopalova, Biophysics (Moscow) 51 (3), 335 (2006).

    Article  Google Scholar 

  19. D. Q. M. Craig, Dielectric Analysis of Pharmaceutical Systems (Taylor and Francis, London, 1995).

    Google Scholar 

  20. S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, J. Phys. Chem. 91, 6337 (1987).

    Article  Google Scholar 

  21. W. J. Ellison, K. Lamkaouchi, and J.-M. Moreau, J. Mol. Liquids 68, 171 (1996).

    Article  Google Scholar 

  22. V. Ya. Maleev, M. A. Semenov, and A. I. Gasan, Biofizika 38 (5), 768 (1993).

    Google Scholar 

  23. V. A. Kashpur, V. Ya. Maleev, and O. V. Khorunzhaya, Telecommun. Rad. Eng. 69 (16), 1473 (2010).

    Article  Google Scholar 

  24. U. Kaatze, Meas. Sci. Technol. 18, 967 (2007).

    Article  ADS  Google Scholar 

  25. A. R. von Hippel, Dielectrics and Waves (Chapman and Hall, London, 1954; Izd. Inostrannoi Literatuty, Moscow, 1960).

    Google Scholar 

  26. T. R. Globus, D. L. Woolard, and T. Khromova, J. Biol. Phys. 29, 89 (2003).

    Article  Google Scholar 

  27. L. A. Marky, D. W. Kupke, and B. I. Kankia, Methods Enzymol. 340, 149 (2001).

    Article  Google Scholar 

  28. E. H. Grant, Phys. Med. Biol. 2, 17 (1957).

    Article  Google Scholar 

  29. S. Ray and J. Behari, Phys. Med. Biol. 31 (9), 1031 (1986).

    Article  Google Scholar 

  30. S. E. Bresler, Introduction to Molecular Biology (Academic, New York, 1971; Nauka, Moscow, 1973).

    Google Scholar 

  31. P. L. Privalov, Biofizika 13 (1), 163 (1968).

    Google Scholar 

  32. M. Harmouchi, G. Albiser, and S. Premilat, Eur. Biophys. J. 19 (2), 87 (1990).

    Article  Google Scholar 

  33. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984; Mir Moscow, 1987).

    Google Scholar 

  34. T. J. Buchanan, G. H. Haggis, J. B. Hasted, and D. G. Robinson, Proc. Roy. Soc. Lond. A 213 (1114), 379 (1952).

    Article  ADS  Google Scholar 

  35. E. Ermilova, F. F. Bier, and R. Holzel, Phys. Chem. Chem. Phys. 16, 11256 (2014).

    Article  Google Scholar 

  36. Ya. Yu. Akhadov, Dielectric Properties of Binary Solutions (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  37. R. H. Dashwood, Int. J. Oncol. 10 (4), 721 (1997).

    Google Scholar 

  38. A. A. Ouameur and H.-A. Tajmir-Riahi, J. Biol. Chem. 279, 42041 (2004).

    Article  Google Scholar 

  39. T. I. Grokhlina, N. A. Polteva, E. González, et al., Biophysics (Moscow) 50 (5), 716 (2005).

    Google Scholar 

  40. B. Schneider, S. L. Ginell, and H. M. Berman, Biophys. J. 63, 1572 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pesina.

Additional information

Original Russian Text © V.A. Kashpur, O.V. Khorunzhaya, D.A. Pesina, A.V. Shestopalova, V.Ya. Maleev, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashpur, V.A., Khorunzhaya, O.V., Pesina, D.A. et al. Hydration effects accompanying the formation of DNA complexes with some ligands. BIOPHYSICS 62, 31–37 (2017). https://doi.org/10.1134/S0006350917010092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010092

Keywords

Navigation