Skip to main content
Log in

Application of the Smoluchowski equation with a source term to the model of lipid pore formation during a phase transition

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Smoluchowski equation, which describes pore diffusion in the radius space, with a source term, is used in modeling the process of the formation of a hydrophilic pore in a lipid bilayer during phase transition. The introduction of a hydrophobic-pore source term into the equation reflects the emergence of additional defects in a bilayer caused by the decrease in the molecule area under the transition from the liquid crystalline to the gel phase. The distribution of the time probability density calculated within the model that is required for the formation of a hydrophilic pore is in good agreement with the previously published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Yatvin, J. N. Weinstein, W. H. Dennis, and R. Blumenthal, Science 202, 1290 (1978).

    Article  ADS  Google Scholar 

  2. A. Z. Wang, R. Langer, and O. C. Farokhzad, Annu. Rev. Med. 63, 185 (2012).

    Article  Google Scholar 

  3. G. Koning, A. Eggermont, L. Lindner, and T. ten Hagen, Pharmaceut. Res. 27, 1750 (2010).

    Article  Google Scholar 

  4. Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, et al., Zh. Radioelectron. No. 11 (2014). http://jre.cplire.ru/ jre/nov14/9/text.html.

    Google Scholar 

  5. A. A. Anosov, O. Yu. Nemchenko, Yu. A. Less, et al., Akust. Zh. 61 (4), 535 (2015).

    Google Scholar 

  6. K. Smith, J. Neu, and W. Krassowska, Biophys. J. 86, 2813 (2004).

    Article  ADS  Google Scholar 

  7. R. W. Glaser, S. L. Leikin, L. V. Chernomordik, et al., Biochim. Biophys. Acta 940, 275 (1988).

    Article  Google Scholar 

  8. K. C. Melikov, V. A. Frolov, A. Shcherbakov, et al., Biophys. J. 80, 1829 (2001).

    Article  Google Scholar 

  9. J. C. Weaver and Yu. A. Chizmadzhev, Bioelectrochem. Bioelectroenerg. 41, 135 (1996).

    Article  Google Scholar 

  10. V. F. Antonov, V. V. Petrov, A. A. Molnar, et al., Nature 283, 585 (1980).

    Article  ADS  Google Scholar 

  11. V. F. Antonov, A. A. Anosov, V. P. Norik, and E. Yu. Smirnova, Eur. Biophys. J. 32, 55 (2003).

    Article  Google Scholar 

  12. J. Gallaher, K. Wodzinska, T. Heimburg, and M. Bier, Phys. Rev. E 81, 061925 (2010).

    Article  ADS  Google Scholar 

  13. A. Blicher and T. Heimburg, PLOS ONE 8 (6), e65707 (2013). doi doi 10.1371/journal.pone.0065707

    Article  ADS  Google Scholar 

  14. B. Wunderlich, C. Leirer, A.-L. Itzko, et al., Biophys. J. 96, 4592 (2009).

    Article  ADS  Google Scholar 

  15. V. F. Antonov, A. A. Anosov, V. P. Norik, and E. Yu. Smirnova, Eur. Biophys. J. 34, 155 (2005).

    Article  Google Scholar 

  16. V. F. Antonov, A. A. Anosov, V. P. Norik, and E. Yu. Smirnova, Biophysics (Moscow) 50 (5), 867 (2008).

    Google Scholar 

  17. V. F. Antonov, E. Yu. Smirnova, A. A. Anosov, et al., Biophysics (Moscow) 53 (5), 390 (2008).

    Article  Google Scholar 

  18. A. A. Anosov, M. S. Kuprijanova, O. Yu. Nemchenko, et al., Biophysics (Moscow) 60 (1), 73 (2015).

    Article  Google Scholar 

  19. K. T. Powell and J. C. Weaver, Bioelectrochem. Bioelectroenerg. 15, 211 (1986).

    Article  Google Scholar 

  20. D. A. Stewart, T. R. Gowrishankar, and J. C. Weaver, IEEE Trans. Plasma Sci. 32, 1696 (2004).

    Article  ADS  Google Scholar 

  21. S. A. Freeman, M. A. Wang, and J. C. Weaver, Biophys. J. 67, 42 (1994).

    Article  ADS  Google Scholar 

  22. M. Langner and S. W. Hui, Chem. Phys. Lipids 65 (1), 23 (1993).

    Article  Google Scholar 

  23. E. Evans and R. Kwok, Biochemistry 21, 4874 (1982).

    Article  Google Scholar 

  24. K. John, S. Schreiber, J. Kibelt, et al., Biophys. J. 83, 3315 (2002).

    Article  ADS  Google Scholar 

  25. J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta 1469 (3), 159 (2000).

    Article  Google Scholar 

  26. E. S. Wentzel and L. A. Ovcharov, The Theory of Stochastic Processes and Its Engineering Applications (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  27. S. M. Rytov, A Primer in Statistical Radiophysics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  28. I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, et al., Bioelectrochem. Bioenerg. 6, 37 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Additional information

Original Russian Text © A.A. Anosov, A.A. Sharakshane, E.Yu. Smirnova, O.Yu. Nemchenko, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1133–1138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Sharakshane, A.A., Smirnova, E.Y. et al. Application of the Smoluchowski equation with a source term to the model of lipid pore formation during a phase transition. BIOPHYSICS 61, 936–941 (2016). https://doi.org/10.1134/S0006350916060051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916060051

Keywords

Navigation