Skip to main content
Log in

Bilayer permeability during phase transition as an Erlang flow of hydrophilic pores resulting from diffusion in the radius space

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The formation of hydrophilic pores in a lipid bilayer during phase transition is described using the Smoluchowski equation with an additional term of the hydrophobic pore source. This term is added to account for defects in lipid packing during phase transition. We assume that the temporal sequence of the pores is a stochastic process, a non-stationary second-order Erlang flow. Flow characteristics depend on the equation solution and determine the formation times of the hydrophilic pores. The calculated distribution of the durations of intervals between hydrophilic pores is in a good agreement with experimental data published before. In the context of this model we describe the influence of poly(ethylene glycol) on the pore formation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heimburg T. 2010. Lipid ion channels. Biophys. Chem. 150, 2–22.

    Article  CAS  PubMed  Google Scholar 

  2. Wunderlich B., Leirer C., Idzko A.-L., Keyser U.F., Wixforth A., Myles V.M., Heimburg T., Schneider M.F. 2009. Phase state dependent current fluctuations in pure lipid membranes. Biophys. J. 96, 4592–4597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antonov V.F., Anosov A.A., Norik V.P., Smirnova E.Yu. 2005. Soft perforation of planar bilayer lipid membranes of dipalmitoylphosphatidylcholine at the temperature of the phase transition from the liquid crystalline to the gel state. Eur. Biophys. J. 34, 155–162.

    Article  CAS  PubMed  Google Scholar 

  4. Antonov V.F., Smirnova E.Yu., Anosov A.A., Norik V.P., Nemchenko, O.Yu. 2008. PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers. Biofizika (Rus.). 53 (5), 802–809 [Translated version in: Biophysics. 53 (5), 390–395].

    CAS  Google Scholar 

  5. Andersen T., Kyrsting A., Bendix P.M. 2014. Local and transient permeation events are associated with local melting of giant liposomes. Soft Matter. 10, 4268–4274.

    Article  CAS  PubMed  Google Scholar 

  6. Saulis G. 1997. Pore disappearance in a cell after electroporation: Theoretical simulation and comparison with experiments. Biophys. J. 73, 1299–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallaher J., Wodzinska K., Heimburg T., Bier M. 2010. Ion-channel-like behavior in lipid bilayer membranes at the melting transition. Phys. Rev. E. 81, 061925.

    Article  Google Scholar 

  8. Anosov A.A., Kuprijanova M.S., Nemchenko, O.Yu., Norik V.P., Sergeenko, E.V., Smirnova E.Yu. 2015. States of lipid pores in bilayer lipid membranes at a phase transition in a LiCl solution with addition of molecules of polyethylene glycol. Biofizika (Rus.). 60 (1), 95–101 [Translated version in: Biophysics. 60 (1), 73–78].

    CAS  Google Scholar 

  9. Glaser R.W., Leikin S.L., Chernomordik L.V., Pastushenko V.F., Sokirko A.I. 1988. Reversible electrical breakdown of lipid bilayers: Formation and evolution of pores. Biochim. Biophys. Acta. 940, 275–287.

    Article  CAS  PubMed  Google Scholar 

  10. Smith K., Neu J., Krassowska W. 2003. Model of creation and evolution of stable electropores for DNA delivery. Biophys. J. 86, 2813–2826.

    Article  Google Scholar 

  11. Powell K.T., Weaver J.C. 1986. Transient aqueous pores in bilayer membranes: A statistical theory. Bioelectrochem. Bioelectroenerg. 15, 211–227.

    Article  Google Scholar 

  12. Stewart D.A., Gowrishankar T.R., Weaver J.C. 2004. Transport lattice approach to describing cell electroporation: Use of a local asymptotic model. IEEE Transactions on Plasma Sci. 32, 1696–1708.

    Article  Google Scholar 

  13. Freeman S.A., Wang M.A., Weaver J.C. 1994. Theory of electroporation of planar bilayer membranes: Predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys. J. 67, 42–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anosov A.A., Sharakshane A.A., Smirnova E.Yu., Nemchenko O.Yu. 2016. Usage of Smoluchowski equation with a source term for the model of the lipid pore formation at the phase transition. Biofizika (Rus.). 61, 1133–1138.

    Google Scholar 

  15. Nagle J.F., Tristram-Nagle S. 2000. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469, 159–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sillerud L.O., Barnett R.E. 1982. Lack of transbilayer coupling in phase transitions of phosphatidylcholine vesicles. Biochemistry. 21, 1756–1760.

    Article  CAS  PubMed  Google Scholar 

  17. John K., Schreiber S., Kubelt J., Herrmann A., Muller P. 2002. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: Implications for rapid flip-flop in biological membranes. Biophys. J. 83, 3315–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sobol I.M. 1973. Chislennye metody Monte-Karlo (Numerical Monte Carlo methods). Moscow: Nauka.

    Google Scholar 

  19. Ventsel E.S., Ovcharov L.A. 2000. Teoria sluchainykh protsessov i ee inzhenernye prilozhenia (Theory of random processes and its engineering applications). Moscow: Vysshaja Shkola.

    Google Scholar 

  20. Lehtonen J.Y.A., Kinnunen P.K.J. 1994. Changes in the lipid dynamic of liposomal membranes induced by poly(ethylene glycol): Free volume alterations revealed by inter- and intramolecular excimer forming phospholipid analogs. Biophys. J. 66, 1981–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mosgaard L.D., Jackson A.D., Heimburg T. 2013. Fluctuations of systems in finite heat reservoirs with applications to phase transitions in lipid membranes. J. Chem. Physics. 139, 125101.

    Article  Google Scholar 

  22. Melikov K.C., Frolov V.A., Shcherbakov A., Samsonov A.V., Chizmadzhev Yu.A., Chernomordik L.V. 2001. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80, 1829–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Additional information

Original Russian Text © A.A. Anosov, A.A. Sharakshane, E.Yu. Smirnova, O.Yu. Nemchenko, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 6, pp. 387–397.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Sharakshane, A.A., Smirnova, E.Y. et al. Bilayer permeability during phase transition as an Erlang flow of hydrophilic pores resulting from diffusion in the radius space. Biochem. Moscow Suppl. Ser. A 11, 8–16 (2017). https://doi.org/10.1134/S1990747816040139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816040139

Keywords

Navigation