Skip to main content
Log in

The decrement in light sensitivity of the isolated frog retinal rod in the presence of a phosphorylation-resistant GDP analogue of guanosine-5′-O-(2-thiodiphosphate) as a confirmation of the hypothesis about transducin activation via the transphosphorylation mechanism

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The decrement in light sensitivity of the isolated frog retinal rod cell was demonstrated after a short-time perfusion with guanosine-5′-O-(2-thiodiphosphate), which is an analog of GDP that is resistant to phosphorylation by nucleoside diphosphate kinase. This decrement can be explained by the hypothesis that transducin, which is the main GTP-binding protein of the retinal rod photoreceptor of vertebrates, is activated by phosphorylation of bound GDP to GTP; this is induced by the activated rhodopsin receptor. The results can be considered as a confirmation of the proposed hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G proteins:

heterotrimeric GTP-binding proteins

R*:

photoactivated rhodopsin

NDP kinase:

nucleoside diphosphate kinase

GDP[S]:

guanosine-5’-O-(2-thiodiphosphate)

References

  1. A. G. Gilman, Biosci. Rep. 15, 65 (1995).

    Article  ADS  Google Scholar 

  2. B. K.-K. Fung, and L. Stryer, Proc. Natl. Acad. Sci. USA, 77, 2500 (1980).

    Article  ADS  Google Scholar 

  3. B. K.-K. Fung, J. B. Hurley, and L. Stryer, Proc. Natl. Acad. Sci. USA, 78, 152 (1981).

    Article  ADS  Google Scholar 

  4. L. Stryer, Annu. Rev. Neurosci. 9, 87 (1986).

    Article  Google Scholar 

  5. L. Stryer, Harvey Lectures 87, 129 (1993).

    Google Scholar 

  6. L. Stryer, J. Biol. Chem. 266, 10711 (1991).

    Google Scholar 

  7. E. N. Pugh, Jr. and T. D. Lamb, Biochim. Biophys. Acta 1141, 111 (1993).

    Article  Google Scholar 

  8. E. N. Pugh, Jr. and T. D. Lamb, in Handbook of Biological Physics, Ed. by D. G. Stavenga, E. N. Pugh, Jr., and W. J. de Grip (Elsevier Science B.V., Amsterdam 2000). Chapter 5, 183.

  9. V. Y. Arshavsky, T. D. Lamb, and E. N. Pugh, Jr., Annu. Rev. Physiol. 64, 153 (2002).

    Article  Google Scholar 

  10. A. B. Fawzi and J. K. Northup, Biochem., 29, 3804 (1990).

    Article  Google Scholar 

  11. D. A. Baylor, T. D. Lamb, and K.-W. Yau, J. Physiol. 288, 613 (1979).

    Google Scholar 

  12. R. Uhl and N. J. Ryba, Biochim. Biophys. Acta 1054, 56 (1990).

    Article  Google Scholar 

  13. R. Uhl, R. Wagner, and N. Ryba, Trends Neurosci. 13, 64 (1990).

    Article  Google Scholar 

  14. E. J. Helmreich, and K. P. Hofmann, Biochim. Biophys. Acta 1286, 285 (1996).

    Article  Google Scholar 

  15. N. Kimura and N. Nagata, J. Biol. Chem. 254, 3451 (1979).

    Google Scholar 

  16. N. Kimura, N. Shimada, M. Fukuda, et al., J. Bioenerg. Biomembr. 32, 309 (2000).

    Article  Google Scholar 

  17. D. N. Orlov and N. Ya. Orlov, Biophysics (Moscow) 53 (6), 482 (2008).

    Article  Google Scholar 

  18. A. S. Otero, Biochem. Pharmacol. 39, 1399 (1990).

    Article  Google Scholar 

  19. A. S. Otero, J. Bioenerg. Biomembr. 32, 269 (2000).

    Article  Google Scholar 

  20. V. G. Tishchenkov, L. O. Grumbkova, and N. Ya. Orlov, Dokl. Akad. Nauk SSSR 268, 735 (1982).

    Google Scholar 

  21. N. Ya. Orlov, Phototransduction Systems in Rods and Cones of the Vertebrate Retina: Molecular Mechanisms (LAP Lambert Acad. Publ., Saarbrücken, Deucschland, 2011).

    Google Scholar 

  22. V. G. Tishchenkov and N. Ya. Orlov, Mol. Biol. (Moscow) 18, 776 (1984).

    Google Scholar 

  23. A. Kowluru, S. E. Seavey, C. J. Rhodes, and S. A. Metz, Biochem. J. 313, 97 (1996).

    Article  Google Scholar 

  24. R. E. Parks, Jr. and R. P. Agarwal, in The Enzymes (Academic Press, New York, 1973), Vol. 8, pp. 307–334.

    Google Scholar 

  25. E. H. Postel, S. J. Berberich, J. W. Rooney, and D. K. Kaetzel, J. Bioenerg. Biomembr. 32, 277 (2000).

    Article  Google Scholar 

  26. M. T. Hartsough and P. S. Steeg, J. Bioenerg. Biomembr. 32, 301 (2000).

    Article  Google Scholar 

  27. M. L. Lacombe, L. Milon, A. Munier, et al., J. Bioenerg. Biomembr. 32, 247 (2000).

    Article  Google Scholar 

  28. A. M. Rosengard, H. C. Krutzsch, Shearn A., et al., Nature 342, 177 (1989).

    Article  ADS  Google Scholar 

  29. R. Barnes, S. Masood, E. Barker, et al., Am. J. Pathol. 139, 245 (1991).

    Google Scholar 

  30. P. S. Steeg, A. de la Rosa, U. Flatow, et al., Breast Cancer Res. Treat. 25, 175 (1993).

    Article  Google Scholar 

  31. P. S. Steeg, D. Palmieri, T. Ouatas, and M. Salerno, Cancer Lett. 190, 1 (2003).

    Article  Google Scholar 

  32. J. Biggs, E. Hersperger, P. Steeg, et al., Cell 63, 933 (1990).

    Article  Google Scholar 

  33. J. Biggs, N. Tripoulas, E. Hersperger, et al., Genes 2, 1333 (1988).

    Article  Google Scholar 

  34. N. Ishikawa, J. Bioenerg. Biomembr. 32, 309 (2000).

    Article  Google Scholar 

  35. C. Dumas, I. Lascu, S. Morera, et al., EMBO J. 11, 3203 (1992).

    Google Scholar 

  36. J. Janin, C. Dumas, S. Morera, et al., J. Bioenerg. Biomembr. 32, 215 (2000).

    Article  Google Scholar 

  37. I. Lascu, A. Giartosio, S. Ransac, and M. Erent, J. Bioenerg. Biomembr. 32, 227 (2000).

    Article  Google Scholar 

  38. A. M. Gilles, E. Presecan, A. Vonica, and I. Lascu, J. Biol. Chem. 266, 8784 (1991).

    Google Scholar 

  39. J. A. Stahl, A. Leone, A. M. Rosengard, et al., Cancer Res. 51, 445 (1991).

    Google Scholar 

  40. Ishikawa, N., Shimada, N., Munakata, et al., J. Biol. Chem. 267, 14366 (1992).

    Google Scholar 

  41. N. Shimada, N. Ishikawa, Y. Munakata, et al., J. Biol. Chem. 268, 2583 (1993).

    Google Scholar 

  42. T. Fukuchi, N. Shimada, N. Hanai, et al., Biochem. Biophys. Acta 1265, 113 (1994).

    Google Scholar 

  43. N. Ya. Orlov and N. Kimura, Biochemistry (Moscow) 63, 171 (1998).

    Google Scholar 

  44. H. Kuhn, Nature 283, 587 (1980).

    Article  ADS  Google Scholar 

  45. H. Kuhn, Curr. Top. Membr. Transp. 15, 171 (1981).

    Article  Google Scholar 

  46. N. Ya. Orlov, T. G. Orlova, K. Nomura, et al., FEBS Lett. 389, 186 (1996).

    Article  Google Scholar 

  47. N. Ya. Orlov, T. G. Orlova, Ya. K. Reshetnyak, et al., J. Biomol. Struct. Dyn. 16, 955 (1999).

    Article  Google Scholar 

  48. N. Ya. Orlov, T. G. Orlova, Ya. K. Reshetnyak, et al., Biochem. Mol. Biol. Int. 41, 189 (1997).

    Google Scholar 

  49. N. Ya. Orlov, Y. Ishijima, D. N. Orlov, et al., Biochemistry (Moscow) 72 (8), 635 (2007).

    Article  Google Scholar 

  50. F. Cuello, R. A. Schulze, F. Heemeyer, et al., J. Biol. Chem. 278, 7220 (2003).

    Article  Google Scholar 

  51. H. J. Hippe, S. Lutz, F. Cuello, et al., J. Biol. Chem. 278, 7227 (2003).

    Article  Google Scholar 

  52. D. N. Orlov, T. G. Orlova, A. R. Nezvetsky, and N. Ya. Orlov, Biophysics (Moscow) 55 (6), 908 (2010).

    Article  Google Scholar 

  53. D. N. Orlov, A. R. Nezvetsky, T. G. Orlova, et al., Biophysics (Moscow) 59 (5), 681 (2014).

    Article  Google Scholar 

  54. T. Wieland, I. Ulibarri, P. Gierschik, and K. H. Jakobs, Eur. J. Biochem. 196, 707 (1991).

    Article  Google Scholar 

  55. T. Wieland, M. Ronzani, and K. H. Jakobs, J. Biol. Chem. 267, 20791 (1992).

    Google Scholar 

  56. T. Wieland, B. Nurnberg, I. Ulibarri, et al., J. Biol. Chem. 268, 18111 (1993).

    Google Scholar 

  57. J. W. Clack, M. Juhl, J. Li, et al., Electrophoresis 24, 3493 (2003).

    Article  Google Scholar 

  58. J. W. Clack, M. L. Springmeyer, C. R. Clark, and F. A. Witzmann, Cell Biol. Int. 30, 829 (2006).

    Article  Google Scholar 

  59. T. D. Lamb and H. R. Matthews, J. Physiol. 407, 463 (1988).

    Article  Google Scholar 

  60. W. A. Sather and P. B. Detwiler, Proc. Natl. Acad. Sci. USA, 84, 9290 (1987).

    Article  ADS  Google Scholar 

  61. I. Lascu and P. Gonin, J. Bioenerg. Biomemb. 32, 64 (2000).

    Google Scholar 

  62. T. D. Lamb, Biophys. J. 67, 1439 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Petrukhin.

Additional information

Original Russian Text © O.V. Petrukhin, T.G. Orlova, A.R. Nezvetsky, N.Ya. Orlov, 2016, published in Biofizika, 2016, Vol. 61, No. 5, pp. 879–883.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrukhin, O.V., Orlova, T.G., Nezvetsky, A.R. et al. The decrement in light sensitivity of the isolated frog retinal rod in the presence of a phosphorylation-resistant GDP analogue of guanosine-5′-O-(2-thiodiphosphate) as a confirmation of the hypothesis about transducin activation via the transphosphorylation mechanism. BIOPHYSICS 61, 884–887 (2016). https://doi.org/10.1134/S0006350916050249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916050249

Keywords

Navigation