Skip to main content
Log in

An iterative continuous-event model of the population outbreak of a phytophagous Hemipteran

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A model scenario of a drastic increase in the number of a phytophagous species (jumping plant lice) at the expense of primary and secondary Encyrtidae parasites (a large family of parasitic microwasps) has been developed based on the case study of changes in the local density of a Psyllidae species in Australia. A phenomenological model differentially describes the reproduction efficiency in several ranges of the population state. A continuous-event structure is proposed where the rate of decrease in the abundance of generations is uneven at different developmental stages of the insect with an incomplete metamorphosis and the points where it changes are determined by the state of internal variables in the auxiliary equation for the continuous system. A spontaneous time-limited local outbreak occurs after overcoming the threshold equilibrium in the iterative dynamic system, which reduces the effect of normal regulatory mechanisms of psyllid reproduction and changes the rate of the decrease in the abundance of generations. The method of supplementing the right-hand part of the first equation by special functional with a limited range of values simulates a drastic decrease in survival with depletion of resources. This modification causes a backward tangent bifurcation. Several generations after the bifurcation, the population switches to the mode of fluctuations without any pronounced cyclic component, which is common for small insects with a low abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Gauze and A. A. Vitt, Izv. Akad. Nauk SSSR 10, 1551 (1934).

    Google Scholar 

  2. A. D. Bazykin and A. I. Khibnik, Biofizika 26 (5), 851 (1981).

    Google Scholar 

  3. M. M. Gonik, A. E. Bobyrev, V. A. Burmensky, et al., Biophysics (Moscow) 52 (4), 445 (2007).

    Article  Google Scholar 

  4. P. Mulock and E. Christiansen, For. Ecol. Manag. 14 (2), 125 (1986).

    Article  Google Scholar 

  5. D. Ludwig, D. D. Jones, and C. S. Holling, J. Anim. Ecol. 47 (1), 315 (1978).

    Article  Google Scholar 

  6. L. R. Clark, Austral. J. Zool. 12 (3), 362 (1964).

    Article  Google Scholar 

  7. D. R. Gray, et al., For. Ecol. Manag 127 (1), 217 (2000).

    Article  Google Scholar 

  8. J. Berry, Biosecurity 68, 18 (2006).

    Google Scholar 

  9. L. R. Clark and M. J. Dallwitz, Austral. J. Zool. 23 (4), 523 (1975).

    Article  Google Scholar 

  10. E. A. Kriksunov and M. A. Snetkov, Dokl. Akad. Nauk SSSR 253 (3), 759 (1980).

    Google Scholar 

  11. L. V. Nedorezon and Yu. V. Utyupin, Continuous–Discrete Models of Population Dynamics (GPTNB SO RAN, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  12. Y. Kolesov and Y. Senichenkov, in Proc. 8th EUROSIM Congr. on Modelling and Simulation (2013), p. 294.

    Google Scholar 

  13. T. H. Keitt, M. A. Lewis, and R. D. Holt, Am. Nat. 157 (2), 203 (2001).

    Article  Google Scholar 

  14. P. C. Tobin, Popul. Ecol. 51, 373 (2009).

    Article  Google Scholar 

  15. M. J. Feigenbaum, Commun. Math. Phys. 77 (1), 65 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Grebogi, E. Ott, and J. Yorke, Phys. Rev. Lett. 56 (10), 1011 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Graczyk, D. Sands, and G. Swiatek, Ann. Math. 159, 725 (2004).

    Article  MathSciNet  Google Scholar 

  18. G. B. Astafev, A. A. Koronovski, and A. E. Hramov, Techn. Phys. Lett. 29 (11), 923 (2003).

    Article  ADS  Google Scholar 

  19. H. Kantz and P. Grassberger, Physica D: Nonlin. Phenom. 17 (1), 75 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Hong and Ji. Xu, Nonlin. Dynam. 32 (4), 371 (2003).

    Article  MathSciNet  Google Scholar 

  21. C. Li, Nonlin. Anal. Model. Control 18 (1), 66 (2013).

    Google Scholar 

  22. A. Y. Perevaryukha, J. Comput. Sys. Sci. Int. 50 (3), 491 (2011).

    Article  MathSciNet  Google Scholar 

  23. J. Dushoff, et al., J. Math. Biol 36, 227 (1998).

    Article  MathSciNet  Google Scholar 

  24. P. Coullet and C. Tresser, J. de Physique 39 (8), 25 (1978).

    Google Scholar 

  25. M. J. Ferigenbaum, J. Stat. Phys. 21 (6), 669 (1979).

    Article  ADS  Google Scholar 

  26. P. Barbosa, D. Letourneau, and A. Agrawal, Insect Outbreaks Revisited (Wiley, Oxford, 2012).

    Book  Google Scholar 

  27. S. V. Pushkin, Ross. Zh. Biol. Invazii 1 (1), 42 (2008).

    Google Scholar 

  28. E. V. Aistova and V. G. Bezborodov, Chteniya Pamyati A. I. Kurentsova 26, 144 (2015).

    Google Scholar 

  29. A. G. Moseyko, Entomol. Rev. 93 (2), 208 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Perevaryukha.

Additional information

Original Russian Text © A.Yu. Perevaryukha, 2016, published in Biofizika, 2016, Vol. 61, No. 2, pp. 395–404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevaryukha, A.Y. An iterative continuous-event model of the population outbreak of a phytophagous Hemipteran. BIOPHYSICS 61, 334–341 (2016). https://doi.org/10.1134/S0006350916020147

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916020147

Keywords

Navigation