Skip to main content
Log in

The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is a function of equilibrium segment structure and properties

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Quantitative evaluation of the accuracy of the rapid equilibrium assumption in steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzymatic reaction. This evaluation depends only on the structure and properties of an equilibrium segment; it is independent on the structure and properties of the remaining part (stationary) of the kinetic scheme. In the rapid equilibrium assumption, the smaller the values are of the edges that leave the equilibrium segment in relation to the values of the edges within the equilibrium segment, the higher the accuracy of determination of the reaction velocity is, as well as the concentrations of intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cha, J. Biol. Chem. 243, 820 (1968).

    Google Scholar 

  2. P. V. Vrzheshch, Biokhimiya 75, 1560 (2010).

    Google Scholar 

  3. V. Lescovac, Comprehensive Enzyme Kinetics (Kluwer / Plenum, New York, 2003).

    Google Scholar 

  4. R. Cassels, R. Fears, and R. A. G. Smith, Biochem. J. 247, 395 (1987).

    Google Scholar 

  5. P. R. Young and C. M. Waickus, Biochem. J. 250, 221 (1988).

    Google Scholar 

  6. J. S. Campbell and H. J. Karavolas, J. Steroid Biochem. 32, 283 (1989).

    Article  Google Scholar 

  7. T. M. Glendening and J. E. Poulton, Plant Physiol. 94, 811 (1990).

    Article  Google Scholar 

  8. O. Cunningham, M. G. Gore, and T. J. Mantle, Biochem. J. 345, 393 (2000).

    Article  Google Scholar 

  9. P. Khanna and J. M. Schuman, Biochemistry 40, 1451 (2001).

    Article  Google Scholar 

  10. I. Imrishkova, E. Langley, R. Arreguin-Espinosa, et al., Arch. Biochem. Biophys. 394, 137 (2001).

    Article  Google Scholar 

  11. I. Imrishkova, R. Arreguin-Espinosa, S. Guzman, et al., Res. Microbiol. 156, 351 (2005).

    Google Scholar 

  12. C.-F. Chou, C.-L. Lai, Y.-C. Chang, et al., J. Biol. Chem. 277, 25209 (2002).

    Article  Google Scholar 

  13. R. N. Vogt, D. J. Steenkamp, R. Zheng, and J. S. Blanchard, Biochem. J. 374, 657 (2003).

    Article  Google Scholar 

  14. B. Gao and H. R. Ellis, Biochem. Biophys. Res. Commun. 331, 1137 (2005).

    Article  Google Scholar 

  15. M. Gargouri, B. Gallois, and J. Chaudiere, Arch. Biochem. Biophys. 491, 61 (2009).

    Article  Google Scholar 

  16. V. Bulusu, B. Srinivasan, M. P. Bopanna, and H. Balaram, Biochim. Biophys. Acta 1794, 642 (2009).

    Article  Google Scholar 

  17. R. Varon, M. Garcia-Moreno, C. Garrido, and F. Garcia-Canovas, Biochem. J. 288, 1072 (1992).

    Google Scholar 

  18. I. H. Segel and R. L. Martin, J. Theor. Biol. 135, 445 (1988).

    Article  Google Scholar 

  19. C. M. Topham and K. Brocklehurst, Biochem. J. 282, 261 (1992).

    Google Scholar 

  20. M. J. Selwyn, Biochem. J, 295, 897 (1993).

    Google Scholar 

  21. K. Brocklehurst and C. M. Topham, Biochem. J. 295, 898 (1993).

    Google Scholar 

  22. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics (Portland Press, London, 2004).

    Google Scholar 

  23. G. E. Briggs and J. B. S. Haldane, Biochem. J. 19, 338 (1925).

    Google Scholar 

  24. H. Kijima and S. Kijima, Biophys. Chem. 16, 181 (1982).

    Article  Google Scholar 

  25. T. Keleti, FEBS Lett. 208, 109 (1986).

    Article  Google Scholar 

  26. P. V. Vrzheshch, Biokhimiya 61, 2069 (1996).

    Google Scholar 

  27. P. V. Vrzheshch, Biokhimiya 73, 1390 (2008).

    Google Scholar 

  28. P. V. Vrzheshch, Biokhimiya 76, 603 (2011).

    Google Scholar 

  29. P. V. Vrzheshch, Biophysics (Moscow) 56, 748 (2013).

    Article  Google Scholar 

  30. E. L. King and C. Altman, J. Phys. Chem. 60, 1375 (1956).

    Article  Google Scholar 

  31. M. V. Volkenstein and B. N. Goldstein, Biochim. Biophys. Acta 115, 471 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Vrzheshch.

Additional information

Original Russian Text © P.V. Vrzheshch, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 262–269.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrzheshch, P.V. The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is a function of equilibrium segment structure and properties. BIOPHYSICS 60, 205–211 (2015). https://doi.org/10.1134/S0006350915020219

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020219

Keywords

Navigation