Skip to main content
Log in

The influence of spermine on Ca2+-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,ω-hexadecanedioic acids

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of spermine on Ca2+-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,ω-hexadecanedioic acid was studied. It has been shown that spermine inhibited the cyclosporin A-insensitive mitochondrial swelling induced by palmitic acid and Ca2+ and α,ω-hexadecanedioic acid and Ca2+. 100 μM spermine did not influence the mitochondrial respiration in state V2 and the respiration stimulated by palmitic acid, α,ω-hexadecanedioic acid and Ca2+. Preincubation of liposomes with 100 μM spermine resulted in inhibition of the palmitic acid/Ca2+- and α,ω-hexadecanedioic acid/Ca2+-induced release of a fluorescent dye sulforhodamine B from liposomes. At the same time, spermine added to fatty acid-containing liposomes stimulated Ca2+-dependent release of sulforhodamine B from liposomes. Addition of spermine to liposomes resulted in a significant increase in the ζ -potential of liposomal membranes (from −39.8 to −18.6 mV). A possible mechanism of spermine influence on palmitic acid/Ca2+- and α,ω-hexadecanedioic acid/Ca2+-induced permeability transition in mitochondria and liposomes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Tabor and H. Tabor, Ann. Rev. Biochem. 53, 749 (1984).

    Article  Google Scholar 

  2. A. E. Pegg, IUBMB Life 61(9), 880 (2009).

    Article  Google Scholar 

  3. H. C. Ha, P. M. Woster, J. D. Yager, et al., Proc. Natl. Acad. Sci. USA 94, 11557 (1997).

    Article  ADS  Google Scholar 

  4. H. C. Ha, N. S. Sirisoma, P. Kuppusamy, et al., Proc. Natl. Acad. Sci. USA 95, 11140 (1998).

    Article  ADS  Google Scholar 

  5. M. Salvi and A. Toninello, Biochim. Biophys. Acta 1661(2), 113 (2004).

    Article  Google Scholar 

  6. S. Lenzen, G. Hiekethier, and U. Panten, J. Biol. Chem. 261, 16478 (1986).

    Google Scholar 

  7. R. G. Lapidus and P. M. Sokolove, FEBS Lett. 313, 314 (1992).

    Article  Google Scholar 

  8. V. Tassani, C. Biban, A. Toninello, et al., Biochem. Biophys. Res. Commun. 207(2), 661 (1995).

    Article  Google Scholar 

  9. U. Igbavboa and D. R. Pfeiffer, Biochim. Biophys. Acta 1059(3), 339 (1991).

    Article  Google Scholar 

  10. A. Agafonov, E. Gritsenko, K. Belosludtsev, et al., Biochim. Biophys. Acta 1609, 163 (2003).

    Google Scholar 

  11. G. D. Mironova, E. Gritsenko, O. Gateau-Roesch, et al., J. Bioenerg. Biomembr. 36, 171 (2004).

    Article  Google Scholar 

  12. K. N. Belosludtsev, N. V. Belosludtseva, and G. D. Mironova, Biokhimiya 70(7), 987 (2005).

    Google Scholar 

  13. A. Sultan and P. Sokolove, Arch. Biochem. Biophys. 386, 37 (2001).

    Article  Google Scholar 

  14. A. V. Agafonov, E. N. Gritsenko, E. A. Shlyapnikova, et al., J. Membr. Biol. 215(1), 57 (2007).

    Article  Google Scholar 

  15. K. N. Belosludtsev, N.-E. Saris, L. C. Andersson, et al., J. Bioenerg. Biomembr. 38, 113 (2006).

    Article  Google Scholar 

  16. K. N. Belosludtsev, N. V. Belosludtseva, and G. D. Mironova, Biofizika 53(6), 967 (2008).

    Google Scholar 

  17. K. N. Belosludtsev and G. D. Mironova, Patol. Fiziol. Eksperim. Terapiya, no. 3, 20 (2012).

    Google Scholar 

  18. N. V. Belosludtseva, K. N. Belosludtsev, A. V. Agafonov, et al., Biofizika 54(3), 464 (2009).

    Google Scholar 

  19. M. V. Dubinin, S. I. Adakeeva, and V. N. Samartsev, Biokhimiya 78(4), 533 (2013).

    Google Scholar 

  20. M. V. Dubinin, A. A. Vedernikov, and S. I. Adakeeva, Biol. Membrany 30(5), 364 (2013).

    Google Scholar 

  21. I. Rustenbeck, D. Loptien, K. Fricke, et al., Biochem. Pharmacol. 56, 987 (1998).

    Article  Google Scholar 

  22. B. Chu, Laser Light Scattering (Academic Press, N.Y., 1974).

    Google Scholar 

  23. P. Schlieper, P. K. Medda, and R. Kaufmann, Biochim. Biophys. Acta 644(2), 273 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Belosludtsev.

Additional information

Original Russian Text © K.N. Belosludtsev, N.V. Belosludtseva, M.V. Dubinin, S.V. Gudkov, N.V. Penkov, V.N. Samartsev, 2014, published in Biofizika, 2014, Vol. 59, No. 5, pp. 895–901.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosludtsev, K.N., Belosludtseva, N.V., Dubinin, M.V. et al. The influence of spermine on Ca2+-dependent permeability transition in mitochondria and liposomes induced by palmitic and α,ω-hexadecanedioic acids. BIOPHYSICS 59, 727–731 (2014). https://doi.org/10.1134/S0006350914050042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914050042

Keywords

Navigation