Skip to main content
Log in

Electrochemical measurement of intraprotein and interprotein electron transfer

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Narhi and A. J. Fulco, J. Biol. Chem. 261, 7160 (1986).

    Google Scholar 

  2. S. Modi, W. Primrose, J. Boyle, et al., Biochemistry 34, 8982 (1995).

    Article  Google Scholar 

  3. V. V. Shumyantseva, T. V. Bulko, E. V. Suprun, et al., Biochim. Biophys. Acta 1814, 94 (2011).

    Article  Google Scholar 

  4. A. A. Terent’ev, N. T. Moldogazieva, and K. V. Shaitan, Uspekhi Biol. Khimii 49, 429 (2009).

    Google Scholar 

  5. J. R. Reed and W. L. Backes, Pharmacol. Therap. 133, 299 (2012).

    Article  Google Scholar 

  6. H. Colas, K. Ewen, F. Hannemann, et al., Bioelectro-chemistry 87, 71 (2012).

    Article  Google Scholar 

  7. A. Carmichael and L. Wong, Eur. J. Biochem. 268, 3117 (2001).

    Article  Google Scholar 

  8. V. V. Shumyantseva, T. V. Bulko, Yu. O. Rudakov, et al., J. Inorg. Biochem. 101, 859 (2007).

    Article  Google Scholar 

  9. K. Doerfel, Statistics in Analytical Chemistry (Mir, Moscow, 1994) [in Russian].

    Google Scholar 

  10. B. Fleming, Y. Tian, S. Bell, et al., Eur. J. Biochem. 270, 4082 (2003).

    Article  Google Scholar 

  11. V. V. Shumyantseva, T. V. Bulko, and A. I. Archakov, J. Inorg. Biochem. 99, 1051 (2005).

    Article  Google Scholar 

  12. S. Carrara, V. V. Shumyantseva, A. I. Archakov, and B. Samori, Biosens. Bioelectron. 24, 148 (2008).

    Article  Google Scholar 

  13. S. Joseph, J. F. Rusling, Y. M. Lvov, et al., Biochem. Pharmacol. 65, 1817 (2003).

    Article  Google Scholar 

  14. L. Zhang, Xu. Liu, C. Wang, et al., Protein Express. Purif. 71, 74 (2010).

    Article  Google Scholar 

  15. A. Fanduzzi, L. Mak, E. Capria, et al., Anal. Chem. 83, 3831 (2011).

    Article  Google Scholar 

  16. C. Carrara, A. Cavallini, V. Erokhin, et al., Biosens. Bioelectron. 26, 3914 (2011).

    Article  Google Scholar 

  17. V. V. Shumyantseva, Yu. D. Ivanov, N. Bistolas, et al., Anal. Chem. 76, 6046 (2004).

    Article  Google Scholar 

  18. A. Makhova, V. Shumyantseva, E. Shich, et al., Bio-NanoScience 1, 46 (2011).

    Google Scholar 

  19. A. I. Archakov and G. I. Bachmanova, Cytochrome P450 and Active Oxygen (Taylor and Francis, London, 1990).

    Google Scholar 

  20. B. Lussenburg, L. Babel, N. Vermeulen, and J. Commandeur, Anal. Biochem. 341, 148 (2005).

    Article  Google Scholar 

  21. S. Modi, W. Primrose, J. Boyle, et al., Biochemistry 34, 8982 (1995).

    Article  Google Scholar 

  22. J. Schenkman and I. Jansson, Pharmacol. Therap. 97, 139 (2003).

    Article  Google Scholar 

  23. E. Lojou, L. Pieulle, F. Guerlesquin, and P. Bianco, J. Electroanal. Chem. 523, 130 (2002).

    Google Scholar 

  24. R. Seetharaman, S. White, and M. Rivera, Biochemistry 35, 12455 (1996).

    Article  Google Scholar 

  25. A. V. Yantselevich, A. A. Gilep, and S. A. Usanov, Biokhimiya 73, 1368 (2008).

    Google Scholar 

  26. J. A. Napier, O. Sayanova, A. K. Stobart, and P. R. Shewry, Biochem J. 328, 717 (1997).

    Google Scholar 

  27. D. E. Hultquist and P. G. Passon, Nat. New. Biol. 229, 252 (1971).

    Article  Google Scholar 

  28. H. Takematsu, T. Kawano, S. Koyama, et al., J. Biochem. 115, 381 (1994).

    Google Scholar 

  29. A. Hildebrandt and R. W. Estabrook, Arch. Biochem. Biophys. 143, 66 (1971).

    Article  Google Scholar 

  30. P. Hlavica, Biotechnol. Adv. 27, 103 (2009).

    Article  Google Scholar 

  31. P. Honkakoski, A. Linnala-Kankkunen, S. Usanov, and M. A. Lang, Biochim. Biophys. Acta 1122, 6 (1992).

    Article  Google Scholar 

  32. S.-Ch. Im and L. Waskell, Arch. Biochem. Biophys. 507, 144 (2011).

    Article  Google Scholar 

  33. H. Yamazaki, M. Nakajima, M. Nakamura, et al., Drug Metab. Disposition 27, 999 (1999).

    Google Scholar 

  34. O. L. Guryev, A. A. Gilep, S. A. Usanov, and R. W. Estabrook, Biochemistry 40, 5018 (2001).

    Article  Google Scholar 

  35. Y. Ren, Y. Wang, M. Case, et al., Biochemistry 43, 3527 (2004).

    Article  Google Scholar 

  36. L. Morretto, P. Bertoncello, F. Vezza, and P. Ugo, Bioelectrochemistry 66, 29 (2004).

    Article  Google Scholar 

  37. F. Scheller, U. Wollenberger, C. Lei, et al., Rev. Mol. Biotechnol. 82, 411 (2002).

    Article  Google Scholar 

  38. F. Schroper, A. Baumann, A. Offenhausser, and A. Mayer, Biosens. Bioelectron. 34, 171 (2012).

    Article  Google Scholar 

  39. P. Hlavica, Arch. Biochem. Biophys. 228, 600 (1984).

    Article  Google Scholar 

  40. P. A. Loughran, L. J. Roman, R. T. Miller, and B. S. S. Masters, Arch. Biochem. Biophys. 385, 311 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumyantseva.

Additional information

Original Russian Text © V.V. Shumyantseva, T.V. Bulko, V.B. Lisitsyna, V.B. Urlacher, A.V. Kuzikov, E.V. Suprun, A.I. Archakov, 2013, published in Biofizika, 2013, Vol. 58, No. 3, pp. 453–460.

The text and presentation had to be additionally revised for the English version. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumyantseva, V.V., Bulko, T.V., Lisitsyna, V.B. et al. Electrochemical measurement of intraprotein and interprotein electron transfer. BIOPHYSICS 58, 349–354 (2013). https://doi.org/10.1134/S0006350913030172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913030172

Keywords

Navigation