Skip to main content

Direct and Mediated Electron Transfer in Enzyme Electrodes

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 1

Abstract

This chapter addresses bioelectrochemical processes associated with the electrode/enzyme interface, examining an enzyme’s ability to exchange electrons directly with an electrode surface. Knowledge of the physical and chemical properties of a redox protein is fundamental for an effective, fast, direct exchange of electrons. Essential parameters in the immobilization method include the side through which the enzyme adsorbs on the electrode as well as the distance between the active site and the electrode surface. Theoretical parameters foreseen in Marcus theory are also key. Still, some enzymes cannot perform direct electron transfer—in this case, mediating species are used. This process is known as mediated electron transfer. Such species act by bringing the site around the enzyme closer to the electrode surface due to its oxi-reduction facility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piccolino, M.: Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci. 443–448 (1997)

    Google Scholar 

  2. Galvani, L.: De viribus electricitatis in motu musculari commentarius. Bon. Sci. Art. Inst. Acad. Commun. 363–418 (1791)

    Google Scholar 

  3. Galvani, L.: Opere edite ed inedite del Professore Luigi Galvani raccolte e pubblicate dall’Accademia delle Science dell’Istituto di Bologna. Dall’Olmo, Bologna (1841)

    Google Scholar 

  4. Piccolino, M.: Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res. Bull. 381–407 (1998)

    Google Scholar 

  5. Gattani, A., Singh, S.V., Agrawal, A., Khan, M.H., Singh, P.: Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem. 25–34 (2019)

    Google Scholar 

  6. Bollella, P., Gorton, L., Antiochia, R.: Direct electron transfer of dehydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. Sensors 18, 1319 (2018)

    Article  Google Scholar 

  7. Gross, A.J., Holzinger, M., Cosnier, S.: Buckypaper bioelectrodes: emerging materials for implantable and wearable biofuel cells. Energy Environ. Sci. 11, 1670–1687 (2018)

    Article  CAS  Google Scholar 

  8. Karim, N.A., Yang, H.: Mini-review: recent technologies of electrode and system in the enzymatic biofuel cell (EBFC). Appl. Sci. 11, 5197 (2021)

    Article  CAS  Google Scholar 

  9. Zhou, M.: Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis 27, 1786–1810 (2015)

    Article  CAS  Google Scholar 

  10. Léger, C., Bertrand, P.: Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008)

    Article  Google Scholar 

  11. Mate, D.M., Alcalde, M.: Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechol 10, 1457–1467 (2016)

    Article  Google Scholar 

  12. Franco, J.H., Minteer, S.D., Andrade, A.R.: Product analysis of operating an ethanol/O2 biofuel cell shows the synergy between enzymes within an enzymatic cascade. J. Electrochem. Soc. 165(9), 575–579 (2018)

    Google Scholar 

  13. Stolarczyk, K., Rogalski, J., Bilewicz, R.: NAD(P)-dependent glucose dehydrogenase: applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 135, 107574 (2020)

    Google Scholar 

  14. Ferri, S., Kojima, K., Sode, K.J.: Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. Diabetes Sci. Technol. 5, 1068–1076 (2011)

    Article  Google Scholar 

  15. Bankar, S.B., Bule, M.V., Singhal, R.S., Ananthanarayan, L.: Glucose oxidase—an overview. Biotechnol. Adv. 27, 489–501 (2009)

    Article  CAS  Google Scholar 

  16. Sassolas, A., Blum, L.J., Leca-Bouvier, B.D.: Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012)

    Article  CAS  Google Scholar 

  17. Milton, R.D., Minteer, S.D.: Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J. R. Soc. Interface 14, 20170253 (2017)

    Article  Google Scholar 

  18. Utterback, J.K., Ruzicka, J.L., Keller, H.R., Pellows, L.M., Dukovic, G.: Electron transfer from semiconductor nanocrystals to redox enzymes. Annu. Rev. Phys. Chem. 71, 335–359 (2020)

    Article  CAS  Google Scholar 

  19. Martins, M.V.A., Pereira, A.R., Luz, R.A.S., Iost, R.M., Crespilho, F.N.: Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys. Chem. Chem. Phys. 16, 17426–17436 (2014)

    Article  CAS  Google Scholar 

  20. Marcus, R.A.J.: On the theory of oxidation-reduction reactions involving electron transfer. Chem. Phys. 24, 966–978 (1956)

    CAS  Google Scholar 

  21. Marcus, R.A.: Chemical and electrochemical electron-transfer theory. Ann. Rev. Phys. Chem. 15, 155–196 (1964)

    Article  CAS  Google Scholar 

  22. Marcus, R.A., Sutin, N.: Electron transfers in chemistry and biology. Biochim. Biophys. Acta. 811, 265–322 (1985)

    Article  CAS  Google Scholar 

  23. Hitaishi, V.P., Clement, R., Bourassin, N., Baaden, M., Poulpiquet, A., Sacquin-Mora, S., Ciaccafava, A., Lojou, E.: Controlling redox enzyme orientation at planar electrodes. Catalysts 8, 192 (2018)

    Article  Google Scholar 

  24. Xiao, X., Yan, X., Magner, E., Ulstrup, J.: Polymer coating for improved redox-polymer-mediated enzyme electrodes: a mini-review. Electrochem. Commun. 124 106931 (2021)

    Google Scholar 

  25. Yuan, M., Minteer, S.D.: Redox polymers in electrochemical systems: from methods of mediation to energy storage. Curr. Opin. Electrochem. 15, 1–6 (2019)

    Article  Google Scholar 

  26. Paul, A., Vyas, G., Paul, P., Srivastava, D.N.: Gold-nanoparticle-encapsulated ZIF-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl. Nano Mater. 1, 3600–3607 (2018)

    Article  CAS  Google Scholar 

  27. Xia, H., Zeng, J.: Rational surface modification of carbon nanomaterials for improved direct electron transfer-type bioelectrocatalysis of redox enzymes. Catalysts 10, 1447 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marccus Victor Almeida Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, M.V.A. (2022). Direct and Mediated Electron Transfer in Enzyme Electrodes. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-94988-4_2

Download citation

Publish with us

Policies and ethics