Skip to main content
Log in

Analysis of intermolecular interaction energy inputs in benzene-imidazole and imidazole-imidazole systems in parallel displaced and T-configuration

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Intermolecular interactions in several dimer aromatic systems were analyzed to determine how various energy contributions (electrostatic, exchange, repulsion, and polarization) change depending on the value of monomers separation. Different contributions to the intermolecular energy interactions between imidazole-imidazole and benzene-imidazole dimers are studied using the aug-cc-pVDZ basis set in the framework of ab initio Hartree-Fock and second-order Møller-Plesset perturbation theory methods. Special attention is paid to the exchange and dispersion energy binding contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bhattacharyya, R. P. Saha, U. Samanta, et al., J. Proteom. Res. 2, 255 (2003).

    Article  Google Scholar 

  2. H. Furukawa and E. Gouaux, EMBO J. 22, 2873 (2003).

    Article  Google Scholar 

  3. G. A. Zakharov, A. V. Popov, E. V. Savvateeva-Popova, and B. F. Shchegolev, Biophysics 53, 8 (2008).

    Article  Google Scholar 

  4. E. Gazit, FASEB J. 16, 77 (2002).

    Article  Google Scholar 

  5. A. V. Zhuravlev, G. A. Zakharov, E. V. Savvateeva-Pop-ova, and B. F. Shchegolev, J. Mol. Modeling, DOI 10.1007/s00894-011-1206-1 (2011).

    Google Scholar 

  6. S. Tsuzuki, K. Honda, T. Uchimaru, et al., J. Am. Chem. Soc. 124, 104 (2002).

    Article  Google Scholar 

  7. P. Hobza, H. L. Selzle, and E. W. Schlag, J. Amer. Chem. Soc. 116, 3500 (1994).

    Article  Google Scholar 

  8. S. Tsuzuki, T. Uchimaru, K. Sugawara, and M. Mikami, J. Chem. Phys. 11, 11216 (2002).

    Article  ADS  Google Scholar 

  9. B. F. Shchegolev, E. V. Shlyakhto, R. S. Khrustaleva, et al., Biophysics 52, 527 (2007).

    Article  Google Scholar 

  10. A. V. Zhuravlev, B. F. Shchegolev, E. V. Savvateeva-Popova, and A. V. Popov, Biokhimiya 74, 1135 (2009).

    Google Scholar 

  11. Y. Geng, T. Takatani, E. G. Hohenstein, and C. D. Sherrill, J. Phys. Chem. A 114, 3576 (2010).

    Article  Google Scholar 

  12. E. G. Hohenstein and C. D. Sherrill, J. Phys. Chem. A 113, 878 (2009).

    Article  Google Scholar 

  13. K. Muller-Dethlefs and P. Hobza, Chem. Rev. 100, 143 (2000).

    Article  Google Scholar 

  14. K. Morokuma, J. Chem. Phys. 55, 1236 (1971).

    Article  ADS  Google Scholar 

  15. Su Peifeng and Li Hui, J. Chem. Phys. 131, 014102–1 (2009).

    Article  ADS  Google Scholar 

  16. A. Pedretti, L. Villa, and G. Vistoli, J. Comp. Appl. Math. 18, 167 (2004).

    Google Scholar 

  17. C. C. J. Roothan, Rev. Mod. Phys. 23, 69 (1951).

    Article  ADS  Google Scholar 

  18. C. Moller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  ADS  MATH  Google Scholar 

  19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  20. R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    Article  ADS  Google Scholar 

  21. M. O. Sinnokrot, E. E. Valeev, and C. D. Sherrill, J. Am. Chem. Soc. 124, 10887 (2002).

    Article  Google Scholar 

  22. M. Pitonak, K. E. Riley, P. Neogrady, and P. Hobza, Chem Phys Chem. 9, 1636 (2008).

    Article  Google Scholar 

  23. H. Cybulski and J. Sadlej, J. Chem. Theor. Comp. 4, 892 (2008).

    Article  Google Scholar 

  24. S. E. Wheeler, J. Am. Chem. Soc. 133, 10262 (2011).

    Article  Google Scholar 

  25. G. B. Gaughey, M. Gague, and A. K. Rappe, J. Biol. Chem. 273, 15458 (1998).

    Article  Google Scholar 

  26. J. R. Grover, J. Phys. Chem. 91, 3233 (1987).

    Article  Google Scholar 

  27. K. M. Armstrong, R. Fairman, and R. L. Baldwin, J. Mol. Biol. 230, 284 (1993).

    Article  Google Scholar 

  28. R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841, 2338, 2343 (1955).

    Article  ADS  Google Scholar 

  29. R. Meurisse, R. Brasseur, and A. Thomas, Biochim. Biophys. Acta 1649, 85 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Shchegolev.

Additional information

Original Russian Text © B.F. Shchegolev, M.L. McKee, A.V. Zhuravlev, E.V. Savvateeva-Popova, 2013, published in Biofizika, 2013, Vol. 58, No. 3, pp. 461–467.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchegolev, B.F., McKee, M.L., Zhuravlev, A.V. et al. Analysis of intermolecular interaction energy inputs in benzene-imidazole and imidazole-imidazole systems in parallel displaced and T-configuration. BIOPHYSICS 58, 355–360 (2013). https://doi.org/10.1134/S0006350913030159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913030159

Keywords

Navigation