Skip to main content
Log in

Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of flavonoids, phloridzin, quercetin, myricetin and biochanin A on the dipole potential of planar lipid bilayers formed from dioleylphosphoethanolamine, dioleylphosphoserine, dioleoylphosphocholine, and diphytanoylphosphocholine are investigated. The characteristic parameters of the Langmuir adsorption isotherm, the maximum changes in the membrane dipole potential at an infinitely large concentration of flavonoid and its dissociation constant, which reflects the affinity of flavonoid to the membrane lipids, are determined. Modifying effects of chalcones, flavonols and isoflavones are compared. The influence of the surface charge of the lipid bilayer and the spontaneous curvature of the membrane-forming phospholipids on the adsorption of flavonoids on the model membranes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Liberman and V. P. Topaly, Biofizika 14, 452 (1969).

    Google Scholar 

  2. S. B. Hladky and D. A. Haydon, Biochim. Biophys. Acta 318, 464 (1973).

    Article  Google Scholar 

  3. H. Brockmann, Chem. Phys. Lipids 73, 57 (1994).

    Article  Google Scholar 

  4. D. T. Warshaviak, M. J. Muellner, and M. Chachisvilis, Biochim. Biophys. Acta 1808, 2608 (2011).

    Article  Google Scholar 

  5. R. Latorre and J. J. Donovan, Acta Physiol. Scand. Suppl. 481, 37 (1980).

    Google Scholar 

  6. D. D. Busath, C. D. Thulin, R. W. Hendershot, et al., Biophys. J. 75(6), 2830 (1998).

    Article  Google Scholar 

  7. T. C. Hwang, R. E. Koeppe, and O. S. Andersen, Biochemistry 42(46), 13646 (2003).

    Article  Google Scholar 

  8. R. L. Duffin, M. P. Garrett, K. B. Flake, et al., Langmuir 19, 1439 (2003).

    Article  Google Scholar 

  9. T. Luchian and L. Mereuta, Langmuir 22, 8452 (2006).

    Article  Google Scholar 

  10. O. S. Ostroumova, L. V. Schagina, and V. V. Malev, Membr. Cell Biol. (Moscow) 2(3), 259 (2008).

    Google Scholar 

  11. L. Mereuta, T. Luchian, Y. Park, et al., Biochem. Biophys. Res. Commun. 373, 467 (2008).

    Article  Google Scholar 

  12. O. S. Ostroumova and L. V. Schagina, Membr. Cell Biol. (Moscow) 3(3), 281 (2009).

    Google Scholar 

  13. O. S. Ostroumova, V. V. Malev, M. G. Ilin, et al., Langmuir 26(19), 15092 (2010).

    Article  Google Scholar 

  14. A. Apetrei, L. Mereuta, and T. Luchian, Biochim. Biophys. Acta 1790, 809 (2009).

    Article  Google Scholar 

  15. O. S. Ostroumova, S. S. Efimova, and L. V. Schagina, PLoS One 7(1), e30261 (2012).

    Article  ADS  Google Scholar 

  16. O. S. Andersen, A. Finkelstein, I. Katz, et al., J. Gen. Physiol. 67, 749 (1976).

    Article  Google Scholar 

  17. E. Melnik, R. Latorre, J. E. Hall, et al., J. Gen. Physiol. 69(2), 243 (1977).

    Article  Google Scholar 

  18. S. B. Hladky, Biochim. Biophys. Acta 352(1), 71 (1974).

    Article  Google Scholar 

  19. S. Bala, M. H. Kombrabail, and B. S. Prabhananda, Biochim. Biophys. Acta 1510, 258 (2001).

    Article  Google Scholar 

  20. D. Y. Malkov and V. S. Sokolov, Biochim. Biophys. Acta 1278(2), 197 (1996).

    Article  Google Scholar 

  21. J. Karlovska, D. Uhrikova, N. Kucerka, et al., Biophys. Chem. 119(1), 69 (2006).

    Article  Google Scholar 

  22. Y. Yano and K. Matsuzaki, Biochemistry 41, 12407 (2002).

    Article  Google Scholar 

  23. V. Buzon and J. Cladera, Biochemistry 45, 15768 (2006).

    Article  Google Scholar 

  24. B. Maggio, J. Lipid Res. 40(5), 930 (1999).

    Google Scholar 

  25. T. Asawakarn, J. Cladera, and P. O’Shea, J. Biol. Chem. 276, 38457 (2001).

    Article  Google Scholar 

  26. I. I. Severina, M. S. Muntyan, K. Lewis, et al., IUBMB Life 52(6), 321 (2001).

    Article  Google Scholar 

  27. J. Cladera, P. O’Shea, J. Hadgraft, et al., J. Pharm. Sci. 92(5), 1018 (2003).

    Article  Google Scholar 

  28. M. Alakoskela, T. Soderlund, J. M. Holopainen, et al., Mol. Pharmacol. 66, 161 (2004).

    Article  Google Scholar 

  29. A. Borba, F. Lairion, A. Disalvo, et al., Biochim. Biophys. Acta 1788(12), 2553 (2009).

    Article  Google Scholar 

  30. P. M. Matos, T. Freitas, M. A. Castanho, et al., Biochem. Biophys. Res. Commun. 403(3–4), 270 (2010).

    Article  Google Scholar 

  31. J. Cattelotte, N. Tournier, N. Rizzo-Padain, et al., J. Neurochem. 108(3), 767 (2009).

    Article  Google Scholar 

  32. C. J. Hogberg and A. P. Lyubartsev, Biophys. J. 94(2), 525 (2008).

    Article  Google Scholar 

  33. E. H. Mojumdar and A. P. Lyubartsev, Biophys. Chem. 153(1), 27 (2010).

    Article  Google Scholar 

  34. S. Sonkina, I. I. Tukhfatullina, N. Benseny-Cases, et al., J. Pept. Sci. 16(7), 342 (2010).

    Google Scholar 

  35. O. S. Ostroumova, S. S. Efimova, and L. V. Schagina, Biochim. Biophys. Acta Biomembr. 1808(8), 2051 (2011).

    Article  Google Scholar 

  36. O. S. Ostroumova, S. S. Efimova, E. G. Chulkov, et al., PLoS One. 7(9), e45135 (2012).

    Article  ADS  Google Scholar 

  37. M. Montal and P. Muller, Proc. Nat. Acad. Sci. USA 69(12), 3561 (1972).

    Article  ADS  Google Scholar 

  38. R. Cseh, M. Hetzer, K. Wolf, et al., Eur. Biophys. J. 29(3), 172 (2000).

    Article  Google Scholar 

  39. E. A. Armelin, P. M. Donate, and S. E. Galembeck, Tetrahedron. 56, 5105 (2000).

    Article  Google Scholar 

  40. G. C. Justino and A. J. S. C. Vieira, J. Mol. Model. 16, 863 (2010).

    Article  Google Scholar 

  41. S. S. Efimova and O. S. Ostroumova, Langmuir 28 (26), 9908 (2012).

  42. S. M. Bezrukov, Current Opinion in Colloid Interface Sci. 5, 237 (2000).

    Article  Google Scholar 

  43. F. Lairion and E. A. Disalvo, Langmuir 20, 9151 (2004).

    Article  Google Scholar 

  44. R. F. Flewelling and W. L. Hubbell, Biophys. J. 49, 541 (1986).

    Article  ADS  Google Scholar 

  45. S. A. Simon, T. J. McIntosh, A. D. Magid, et al., Biophys. J. 61(3), 786 (1992).

    Article  Google Scholar 

  46. T. Starke-Peterkovic and R. J. Clarke, Eur. Biophys. J. 39, 103 (2009).

    Article  Google Scholar 

  47. V. S. Sokolov, V. V. Cherny, and V. S. Markin, Biofizika 29(3), 424 (1984).

    Google Scholar 

  48. Y. S. Tarahovsky, E. N. Muzafarov, and Y. A. Kim, Mol. Cell Biochem. 314, 65 (2008).

    Article  Google Scholar 

  49. E. Gross, R. S. Bedlack, and L. M. Loew, Biophys. J. 67, 208 (1994).

    Article  ADS  Google Scholar 

  50. R. Awiszus and G. Stark, Eur. Biophys. J. 15, 321 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Ostroumova.

Additional information

Original Russian Text © O.S. Ostroumova, S.S. Efimova, L.V. Schagina, 2013, published in Biofizika, 2013, Vol. 58, No. 3, pp. 474–480.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostroumova, O.S., Efimova, S.S. & Schagina, L.V. Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption. BIOPHYSICS 58, 366–372 (2013). https://doi.org/10.1134/S0006350913030123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913030123

Keywords

Navigation