Skip to main content
Log in

The dipole-modifying effect of styrylpyridinium dyes and flavonoids on model membranes of different lipid compositions

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Changes in dipole potential of lipid bilayers ϕd mimicking cell membranes induced by the adsorption of low-molecular-weight amphiphiles, flavonoids (phloretin and quercetin), and styrylpyridinium dyes (RH 421 and RH 237) were measured. A method based on the determination of ionophore-induced transmembrane current was used to evaluate changes in ϕd after modifier addition. The characteristic parameters of the Langmuir adsorption isotherm and the greatest changes in ϕd at an infinitely large concentration of flavonoid and its desorption constant, which reflects the affinity of the flavonoid to the lipid phase, were determined. The slopes of linear dependences of ϕd increasing on the concentration of the styrylpiridinium dyes in membrane-bathing solution were defined. It was found that the dipole-modifying effect of phloretin depends on the charge of the lipids forming the membranes, while the ability of quercetin to reduce ϕd is determined by the initial hydration of the bilayer. The results indicate that there are different mechanisms of the decrease in ϕd upon the adsorption of the tested flavonoids. It was shown that the changes in ϕd at the incorporation of styrylpyridinium dyes into bilayers are determined by the interaction of modifiers with membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPhPC:

1,2-diphytanoyl-sn-glycero-3-phosphocholine

DPhPS:

1,2-diphytanoyl-sn-glycero-3-phosphoserine

DOPS:

1,2-dioleoyl-sn-glycero-3-phosphoserine

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

SM:

sphingomyelin from pig brain

SPhS:

N-stearoyl phytosphingosine from Saccharomyces cerevisiae

SES:

N-stearoyl-D-erythrosphinganine

CS:

cholesterol

ES:

ergosterol

References

  • Andersen, O.S., Finkelstein, A., Katz, I., and Cass, A., Effect of phloretin on the permeability of thin lipid membranes, J. Gen. Physiol., 1976, vol. 67, pp. 749–771.

    Article  CAS  PubMed  Google Scholar 

  • Apetrei, A., Mereuta, L., and Luchian, T., The RH 421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes, Biochim. Biophys. Acta, 2009, vol. 1790, pp. 809–816.

    Article  CAS  PubMed  Google Scholar 

  • Aresta-Branco, F., Cordeiro, A.M., Marinho, H.S., Cyrne, L., Antunes, F., and de Almeida, R.F., Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts, J. Biol. Chem., 2011, vol. 286, pp. 5043–5054.

    Article  CAS  PubMed  Google Scholar 

  • Asandei, A, Mereuta, L, and Luchian, T., Influence of membrane potentials upon reversible protonation of acidic residues from the OmpF eyelet, Biophys. Chem., 2008, vol. 135, pp. 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D., Structure and function of membrane rafts, Int. J. Med. Microbiol., 2002, vol. 291, pp. 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Cevc, G., Isothermal lipid phase transitions, Chem. Phys. Lipids, 1991, vol. 57, pp. 293–307.

    Article  CAS  PubMed  Google Scholar 

  • Cseh, R., Hetzer, M., Wolf, K., Kraus, J., Bringmann, G., and Benz, R., Interaction of phloretin with membranes: on the mode of action of phloretin at the water–lipid interface, Eur. Biophys., 2000, vol. J 29, pp. 172–183.

    Article  CAS  Google Scholar 

  • Efimova, S.S. and Ostroumova, O.S., Effect of dipole modifiers on the magnitude of the dipole potential of sterolcontaining bilayers, Langmuir, 2012, vol. 28, pp. 9908–9914.

    Article  CAS  PubMed  Google Scholar 

  • Efimova, S.S. and Ostroumova, O.S., Modifiers of the dipole potential of lipid bilayers, Acta Naturae, 2015, vol. 7, no. 4, pp. 73–82.

    Google Scholar 

  • Efimova, S.S., Schagina, L.V., and Ostroumova, O.S., Channel forming activity of cecropins in lipid bilayers. Effect of agents modifying the membrane dipole potential, Langmuir, 2014, vol. 30, pp. 7884–7892.

    Article  CAS  PubMed  Google Scholar 

  • Ermakov, Yu.A. and Sokolov, V.S., Boundary potentials of bilayer lipid membranes: method and interpretations, in Planar Lipid Bilayers and Applications, Amsterdam: Elsevier, 2003, pp. 109–141.

    Google Scholar 

  • Gawrisch, K., Ruston, D., Zimmerberg, J., Parsegian, V.A., Rand, R.P., and Fuller, N., Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces, Biophys. J., 1992, vol. 61, pp. 1213–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, T.C., Koeppe, R.E., and Andersen, O.S., Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics, Biochemistry, 2003, vol. 42, pp. 13646–13658.

    Article  CAS  PubMed  Google Scholar 

  • Jendrasiak, G.L. and Hasty, J.H., The hydration of phospholipids, Biochim. Biophys. Acta, 1974, vol. 337, pp. 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Koynova, R. and Caffrey, M., Phases and phase transitions of the phosphatidylcholines, Biochim. Biophys. Acta, 1998, vol. 1376, pp. 91–145.

    Article  CAS  PubMed  Google Scholar 

  • Luchian, T. and Mereuta, L., Phlorizin- and 6-ketocholestanol- mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes, Langmuir, 2006, vol. 22, pp. 8452–8457.

    Article  CAS  PubMed  Google Scholar 

  • Lundbaek, J.A., Koeppe, R.E., and Andersen, O.S., Amphiphile regulation of ion channel function by changes in the bilayer spring constant, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 15427–15430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkov, D.Y. and Sokolov, V.S., Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/ solution boundary, Biochim. Biophys. Acta, 1996, vol. 1278, pp. 197–204.

    Article  PubMed  Google Scholar 

  • McIntosh, T.J., Hydration properties of lamellar and nonlamellar phases of phosphatidylcholine and phosphatidylethanolamine, Chem. Phys. Lipids, 1996, vol. 81, pp. 117–131.

    Article  CAS  PubMed  Google Scholar 

  • Mereuta, L., Asandei, A., and Luchian, T., Meet me on the other side: trans-bilayer modulation of a model voltagegated ion channel activity by membrane electrostatics asymmetry, PLoS One, 2011, vol. 6, p. e25276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mereuta, L., Luchian, T., Park, Y., and Hahm, K.S., Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide, Biochem. Biophys. Res. Commun., 2008, vol. 373, pp. 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Montal, M. and Muller, P., Formation of bimolecular membranes from lipid monolayers and study of their electrical properties, Proc. Natl. Acad. Sci. U. S. A., 1972, vol. 65, pp. 3561–3566.

    Article  Google Scholar 

  • Nesterenko, A.M. and Ermakov, Yu.A., Molecular dynamics of phospholipid membranes: ion distribution near the boundary of the neutral and charged liquid crystal bilayer, Biol. Membrany, 2012, vol. 29, no. 5, pp. 374–384.

    CAS  Google Scholar 

  • Ollila, F., Halling, K., Vuorela, P., Vuorela, H., and Slotte, J.P., Characterization of flavonoid–biomembrane interactions, Arch. Biochem. Biophys., 2002, vol. 399, pp. 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Ostroumova, O.S., Gurnev, P.A., Schagina, L.V., and Bezrukov, S.M., Asymmetry of syringomycin E channel studied by polymer partitioning, FEBS Lett., 2007a, vol. 581, pp. 804–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostroumova, O.S., Kaulin, Y.A., Gurnev, A.P., and Schagina, L.V., Effect of agents modifying the membrane dipole potential on properties of syringomycin E channels, Langmuir, 2007b, vol. 23, pp. 6889–6892.

    Article  CAS  PubMed  Google Scholar 

  • Ostroumova, O.S., Malev, V.V., Ilin, M.G., and Schagina, L.V., Surfactin activity depends on the membrane dipole potential, Langmuir, 2010, vol. 26, pp. 15092–15097.

    Article  CAS  PubMed  Google Scholar 

  • Ostroumova, O.S., Schagina, L.V., Mosevitsky, M.I., and Zakharov, V.V., Ion channel activity of brain abundant protein brain acid-soluble protein-1 in planar lipid bilayers, FEBS J., 2011, vol. 278, pp. 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Ostroumova, O.S., Efimova, S.S., Chulkov, E.G., and Schagina, L.V., The interaction of dipole modifiers with polyene-sterol complexes, PLoS One, 2012a, vol. 7, p. e45135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostroumova, O.S., Efimova, S.S., and Schagina, L.V., Probing amphotericin B single channel activity by membrane dipole modifiers, PLoS One, 2012b, vol. 7, p. e30261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostroumova, O.S., Efimova, S.S., and Schagina, L.V., Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption, Biophysics (Moscow), 2013, vol. 58, no. 3, pp. 366–372.

    Article  CAS  Google Scholar 

  • Ostroumova, O.S., Efimova, S.S., Mikhailova, E.V., and Schagina, L.V., The interaction of dipole modifiers with amphotericin–ergosterol complexes. Effects of phospholipid and sphingolipid membrane composition, Eur. Biophys. J., 2014, vol. 43, pp. 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, J., Greco, F., Motais, R., and Latorre, R., Phloretin and phloretin analogs: mode of action in planar lipid bilayers and monolayers, J. Membr. Biol., 1983, vol. 72, pp. 93–103.

    Article  CAS  Google Scholar 

  • Rokitskaya, T.I., Kotova, E.A., and Antonenko, Y.N., Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel, Biophys. J., 2002, vol. 82, pp. 865–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X. and Garlid, K.D., On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes, J. Biol. Chem., 1992, vol. 267, pp. 19147–19154.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Science Foundation (project no. 14-14-00565, sphigolipidcontaining membrane), Program of the Presidium of the Russian Academy of Sciences “Molecular and Cell Biology” (phospholipid bilayers). S.S. Efimova was awarded with Russian Presidential Scholarship (SP- 69.2015.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Efimova.

Additional information

Original Russian Text © S.S. Efimova, L.V. Schagina, O.S. Ostroumova, 2017, published in Tsitologiya, 2017, Vol. 59, No. 3, pp. 229–235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, S.S., Schagina, L.V. & Ostroumova, O.S. The dipole-modifying effect of styrylpyridinium dyes and flavonoids on model membranes of different lipid compositions. Cell Tiss. Biol. 11, 335–341 (2017). https://doi.org/10.1134/S1990519X17040058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17040058

Keywords

Navigation