Skip to main content
Log in

Involvement of cyclic adenosine monophosphate in the control of motile behavior of Physarum polycephalum plasmodium

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Possible involvement of autocrine factors into the control of motile behavior via a receptor-mediated mechanism was investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the auto-oscillatory mode of motility. Cyclic adenosine monophosphate (cAMP) and extracellular cAMP-specific phosphodiesterase, its involvement into the control of plasmodium motile behavior was proved by action of its strong inhibitor, were regarded as putative autocrine factors. It was shown that the plasmodium secreted cAMP. When it was introduced into agar support, 0.1–1 mM cAMP induced a delay of the plasmodium spreading and its transition to migration. When locally applied, cAMP at the same concentrations induced the typical for attractant action increase in oscillation frequency and the decrease of ectoplasm elasticity. The ability to exhibit positive chemotaxis in cAMP gradient and the dependence of its realization were shown to depend on the plasmodium state. Chemotaxis test specimens obtained from the migrating plasmodium, unlike those obtained from growing culture, generate alternative fronts which compete effectively with fronts oriented towards the attractant increment. The results obtained support our supposition stated earlier that advance of the Physarum polycephalum plasmodium leading edge is determined by local extracellular cAMP gradients arising from a time delay between secretion and hydrolysis of the nucleotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. L. Bliokh and V. V. Smolyaninov, Biofizika 22(4), 631 (1977).

    Google Scholar 

  2. S. I. Beylina, N. B. Matveeva, and V. A. Teplov, Biofizika 41(1), 133 (1996)

    Google Scholar 

  3. S. I. Beylina, N. B. Matveeva, A. V. Priezzhev, et al., in Self-Organization Autowaves and Structures Far from Equilibrium (Springer-Verlag, Vienna-NY, 1984), pp. 218–221.

    Book  Google Scholar 

  4. A. R. Nezvetskii, T. G. Orlova, S. I. Beilina, and N. Ya. Orlov, Biophysics 51(5), 715 (2006).

    Article  Google Scholar 

  5. A. R. Nezvetskii, T. G. Orlova, S. I. Beilina, and N. Ya. Orlov, Biol. Membrany 28(6), 541 (2011).

    Google Scholar 

  6. N. B. Matveeva, M. A. Morozov, A. R. Nezvetsky, et al., Biofizika 55(6), 1076 (2010).

    Google Scholar 

  7. J. W. Daniel and H. H. Baldwin, in Methods of Cell Physiology (Acad. Press, New York, 1964), vol. 1, pp. 9–41.

    Google Scholar 

  8. W. G. Camp, Bull. Torrey Bot. Club 63, 205 (1936).

    Article  Google Scholar 

  9. N. B. Matveeva, A. A. Klyueva, V. A. Teplov, and S. I. Beylina, Biol. Membrany 20(1), 66 (2003).

    Google Scholar 

  10. N. B. Matveeva, A. A. Klyueva, V. A. Teplov, and S. I. Beylina, Biol. Membrany 20(1), 66 (2003).

    Google Scholar 

  11. L. Rakoczy, Ber. Deutsch. Bot. Ges. 86, 141 (1973).

    Google Scholar 

  12. R. L. Kinkaid and T. E. Mansour, Exptl. Cell Res. 116, 365 (1978).

    Article  Google Scholar 

  13. A. W. Murray, M. Spiszman, and D. E. Atkinson, Science 171, 496 (1971).

    Article  ADS  Google Scholar 

  14. J. Franke and R. H. Kessin, Cell Signal. 4(5), 471 (1992).

    Article  Google Scholar 

  15. J. Lubs-Haukeness and C. Klein, J. Biol. Chem. 257(20), 12204 (1982).

    Google Scholar 

  16. A. McClory and J. G. Cootte, FEMS Microbiol. Lett. 26, 195 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Matveeva.

Additional information

Original Russian Text © N.B. Matveeva, V.A. Teplov, A.R. Nezvetsky, T.G. Orlova, S.I. Beylina, 2012, published in Biofizika, 2012, Vol. 57, No. 5, pp. 832–839.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveeva, N.B., Teplov, V.A., Nezvetsky, A.R. et al. Involvement of cyclic adenosine monophosphate in the control of motile behavior of Physarum polycephalum plasmodium. BIOPHYSICS 57, 644–650 (2012). https://doi.org/10.1134/S0006350912050132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912050132

Keywords

Navigation