Skip to main content
Log in

Antiamyloid properties of fullerene C60 derivatives

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative estimation of the ability of complexes of fullerene C60 with polyvinylpyrrolidone and fullerene C60 derivatives (the sodium salt of the polycarboxylic derivative of fullerene C60, sodium fullerenolate), has been carried out. The fullerenes destroyed amyloid fibrils of the Aβ(1–42) peptide of the brain and the muscle X-protein. A study of the effect of fullerenes on muscle actin showed that complexes of fullerene C60 with polyvinylpyrrolidone and sodium fullerenolate did not prevent the filament formation of actin, nor did they destroy its filaments in vitro. Conversely, sodium salt of the polycarboxylic derivative of fullerene C60 destroyed actin filaments and prevented their formation. It was concluded that sodium fullerenolate and complexes of fullerene C60 with polyvinylpyrrolidone are the most effective antiamyloid compounds among the fullerenes examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Krusic, P. N. Wasserman, P. N. Keizer, et al., Science 254, 1183 (1991).

    Article  ADS  Google Scholar 

  2. L. Y. Chiang, F.-J. Lu, and J.-T. Lin, J. Chem. Soc. Chem. Commun. 12, 1283 (1995).

    Article  Google Scholar 

  3. L. H. Lu, Y. T. Lee, H. W. Chen, et al., Br. J. Pharmacol. 123, 1097 (1998).

    Article  Google Scholar 

  4. L. L. Dugan, J. K. Gabrielsen, S. P. Yu, et al., Neurobiology of Disease 3, 129 (1996).

    Article  Google Scholar 

  5. I. Ya. Podolsky, E. V. Kondratjeva, S. S. Gurin, et al., Fullerenes, Nanotubes, Carbon Nanostructures 12, 443 (2004).

    Google Scholar 

  6. L. B. Piotrovsky, in Fundamental Directions of Molecular Medicine (Rostok, StPb, 2005) [in Russian].

    Google Scholar 

  7. M. Beck and G. Mandy, Full. Sci. Technol. 5, 291 (1997).

    Article  Google Scholar 

  8. R. S. Ruoff, D. S. Tse, M. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).

    Article  Google Scholar 

  9. N. Sivaraman, R. Dhamodaran, I. Kaliappan, et al., J. Org. Chem. 57, 6077 (1992).

    Article  Google Scholar 

  10. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, and S. V. Gudkov, Free Radic. Biol. Med. 47(6), 786 (2009).

    Article  Google Scholar 

  11. L. N. Sidorov and O. V. Boltalina, Uspekhi Khimii 71, 611 (2002).

    Google Scholar 

  12. L. B. Piotrovsky, K. N. Kozeletskaya, N. A. Medvedeva, et al., Vopr. Virusologii 3, 38 (2001).

    Google Scholar 

  13. P. A. Troshin, A. S. Astahova, and R. N. Lyubovskaya, Fullerenes, Nanotubes, Carbon Nanostruct. 13, 331 (2005).

    Article  Google Scholar 

  14. G. Offer, C. Moos, and R. Starr, J. Mol. Biol. 74, 653 (1973).

    Article  Google Scholar 

  15. J. D. Fritz, D. R. Swartz, and M. L. Greaser, Analyt. Biochem. 180, 205 (1989).

    Article  Google Scholar 

  16. R. Starr and G. Offer, in Methods in Enzymology (New York, London, 1982), vol. 85 (B), p. 130.

  17. J. D. Pardee and J. A. Spudich, in Methods in Cell Biology, By Ed. by L. Wilson (Acad. Press, New York, London, 1982), vol. 24 (A), p. 271.

    Google Scholar 

  18. G. Feuer, F. Molnar, E. Pettko, and F. B. Straub, Hung. Acta Physiol. 1(4–5), 150 (1948).

    Google Scholar 

  19. H. E. Huxley, J. Mol. Biol. 7, 281 (1963).

    Article  Google Scholar 

  20. J. Kang, H. G. Lemaire, A. Unterbeck, et al., Nature 325, 733 (1987).

    Article  ADS  Google Scholar 

  21. Yu. A. Alekseeva, M. D. Shpagina, I. M. Vikhlyantsev, and Z. A. Podlubnaya, in Works of Conf. “From Contemporary Fundamental Biology to New Science Intensive Technologies”, November 11–14 (2002, Pushchino), p. 47.

  22. L. G. Marsagishvili, M. D. Shpagina, V. I. Emel'yanenko, and Z. A. Podlubnaya, Biofizika 50(5), 803 (2005).

    Google Scholar 

  23. Z. A. Podlubnaya, I. Ya. Podolsky, M. D. Shpagina, et al., Biofizika 51(5), 795 (2006).

    Google Scholar 

  24. I. Ya. Podolsky, Z. A. Podlubnaya, E. A. Kosenko, et al., J. Nanosci. Nanotechnology 7(4/5), 1479 (2007).

    Article  Google Scholar 

  25. A. G. Bobylev, L. G. Marsagishvili, M. D. Shpagina, and Z. A. Podlubnaya, Tekhnol. Zhivykh Sistem 6(7), 46 (2009).

    Google Scholar 

  26. L. G. Marsagishvili, A. G. Bobylev, M. D. Shpagina, et al., Biofizika 54(2), 202 (2009).

    Google Scholar 

  27. A. G. Bobylev, A. B. Kornev, L. G. Bobyleva, et al., Organic & Biomolecular Chemistry 9, 5714 (2011).

    Article  Google Scholar 

  28. A. G. Bobylev, L. G. Marsagishvili, and Z. A. Podlubnaya, Biofizika 55(5), 780 (2010).

    Google Scholar 

  29. J. E. Kim and M. Lee, Biochem. Biophys. Res. Commun. 303, 576 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bobylev.

Additional information

Original Russian Text © A.G. Bobylev, M.D. Shpagina, L.G. Bobyleva, A.D. Okuneva, L.B. Piotrovsky, Z.A. Podlubnaya, 2012, published in Biofizika, 2012, Vol. 57, No. 3, pp. 416–421.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, A.G., Shpagina, M.D., Bobyleva, L.G. et al. Antiamyloid properties of fullerene C60 derivatives. BIOPHYSICS 57, 300–304 (2012). https://doi.org/10.1134/S0006350912030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912030050

Keywords

Navigation