Skip to main content
Log in

Intercellular channels in animals

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Gap junctions are considered to serve a similar function in all multicellular animals (Metazoa). Two unrelated protein families are involved in this function: connexins, which are found only in chordates, and pannexins, which are present in the genomes of both chordates and invertebrates. Recent sequence data from different organisms show important exceptions to this simplified scheme. It looks as if Chordate lancelet has only pannexins and no connexins in its genome. New data indicate that some metazoans have neither connexins nor pannexins and use other unidentified proteins to form gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Chailakhyan, Differentiation 45, 1 (1990).

    Article  Google Scholar 

  2. Y. Panchin, I. Kelmanson, M. Matz, et al., Curr Biol. 10, 473 (2000).

    Article  Google Scholar 

  3. Y. V. Panchin, J. Exp. Biol. 208, 1415 (2005).

    Article  Google Scholar 

  4. O. Litvin, A. Tiunova, Y. Connell-Alberts, et al., J. Cell Mol. Med. 10, 613 (2006).

    Article  Google Scholar 

  5. V. I. Shestopalov and Y. Panchin, Cell Mol. Life Sci. 65(3), 376 (2008).

    Article  Google Scholar 

  6. R. Bruzzone, T. W. White, and D. A. Goodenough, Bioessays 18, 709 (1996).

    Article  Google Scholar 

  7. D. A. Goodenough and D. L. Paul, Nat. Rev. Mol. Cell Biol. 4(4), 285 (2003).

    Article  Google Scholar 

  8. G. Dahl and S. Locovei, IUBMB Life 58(7), 409 (2006).

    Article  Google Scholar 

  9. P. Pelegrin and A. Surprenant, EMBO J. 25, 5071 (2006).

    Article  Google Scholar 

  10. R. J. Thompson, N. Zhou, and B. A. MacVicar, Science 312, 924 (2006).

    Article  ADS  Google Scholar 

  11. R. Bruzzone, S. G. Hormuzdi, M. T. Barbe, et al., Proc. Natl. Acad. Sci. USA 100, 13644 (2003).

    Article  ADS  Google Scholar 

  12. C. P. Lai, J. F. Bechberger, R. J. Thompson, et al., Cancer Res. 67, 1545 (2007).

    Article  Google Scholar 

  13. R. Dermietzel, T. K. Hwang, and D. S. Spray, Anat. Embryol. (Berl). 182, 517 (1990).

    Article  Google Scholar 

  14. E. J. Furshpan and D. D. Potter, J. Physiol. 145(2), 289 (1959).

    Google Scholar 

  15. M. Levin, J. Membr. Biol. 185(3), 177 (2002).

    Article  Google Scholar 

  16. W. R. Loewenstein, Physiol. Rev. 61, 829 (1981).

    Google Scholar 

  17. P. Phelan and T. A. Starich, Bioessays 23, 388 (2001).

    Article  Google Scholar 

  18. D. L. Caspar, D. A. Goodenough, L. Makowski, and W. C. Phillips, J. Cell Biol. 74, 605 (1977).

    Article  Google Scholar 

  19. L. Makowski, D. L. Caspar, W. C. Phillips, and D. A. Good-enough, J. Cell Biol. 74, 629 (1977).

    Article  Google Scholar 

  20. S. Maeda, S. Nakagawa, M. Suga, et al., Nature 458, 597 (2009).

    Article  ADS  Google Scholar 

  21. D. L. Paul, J. Cell Biol. 103, 123 (1986).

    Article  Google Scholar 

  22. K. Willecke, J. Eiberger, J. Degen, et al., Biol. Chem. 383, 725 (2002).

    Article  Google Scholar 

  23. M. Yeager and B. J. Nicholson, Curr. Opin. Struct. Biol. 6(2), 183 (1996).

    Article  Google Scholar 

  24. G. Dahl, T. Miller, D. Paul, et al., Science 236, 1290 (1987).

    Article  ADS  Google Scholar 

  25. K. I. Swenson, J. R. Jordan, E. C. Beyer, and D. L. Paul, Cell 57, 145 (1989).

    Article  Google Scholar 

  26. R. Werner, E. Levine, C. Rabadan-Diehl, and G. Dahl, Proc. Natl. Acad. Sci. USA 86, 5380 (1989).

    Article  ADS  Google Scholar 

  27. Y. Sasakura, E. Shoguchi, N. Takatori, et al., Dev. Genes. Evol. 213, 303 (2003).

    Article  Google Scholar 

  28. T. W. White and D. L. Paul, Annu. Rev. Physiol. 61, 283 (1999).

    Article  Google Scholar 

  29. D. A. Goodenough, J. Cell Biol. 61, 557 (1974).

    Article  Google Scholar 

  30. T. M. Barnes, Trends Genet. 10(9), 303 (1994).

    Article  Google Scholar 

  31. P. Phelan, L. A. Stebbings, R. A. Baines, et al., Trends Genet. 14(9), 348 (1998).

    Article  Google Scholar 

  32. A. Baranova, D. Ivanov, N. Petrash, et al., Genomics 83, 706 (2004).

    Article  Google Scholar 

  33. Y. V. Panchin and I. V. Kelmanson, Neuroscience 96, 597 (2000).

    Article  Google Scholar 

  34. F. Vanden Abeele, G. Bidaux, D. Gordienko, J. Cell Biol. 174, 535 (2006).

    Article  Google Scholar 

  35. R. Bruzzone, M. T. Barbe, N. J. Jakob, and H. Monyer, J. Neurochem, 92, 1033 (2005).

    Article  Google Scholar 

  36. L. Bao, S. Locovei, and G. Dahl, FEBS Lett. 572, 65 (2004).

    Article  Google Scholar 

  37. S. Locovei, J. Wang, and G. Dahl, FEBS Lett. 580, 239 (2006).

    Article  Google Scholar 

  38. E. Scemes, R. Dermietzel, D. C. Spray, Glia 24(1), 65 (1998).

    Article  Google Scholar 

  39. S. Locovei, L. Bao, and G. Dahl, Proc. Natl. Acad. Sci. USA 103, 7655 (2006).

    Article  ADS  Google Scholar 

  40. M. A. Peters, T. Teramoto, J. Q. White, et al., Curr. Biol. 17, 1601 (2007).

    Article  Google Scholar 

  41. Z. F. Altun, B. Chen, Z. Wang, and D. H. Hall, Dev. Dyn. 238, 1936 (2009).

    Article  Google Scholar 

  42. L. Timmons and A. Fire, Nature 395, 854 (1998).

    Article  ADS  Google Scholar 

  43. A. M. Jose, J. J. Smith, and C. P. Hunter, Proc. Natl. Acad. Sci. USA 106, 2283 (2009).

    Article  ADS  Google Scholar 

  44. W. M. Winston, C. Molodowitch, and C. P. Hunter, Science 295, 2456 (2002).

    Article  ADS  Google Scholar 

  45. V. Valiunas, Y. Y. Polosina, H. Miller, et al., J. Physiol. 568, 459 (2005).

    Article  Google Scholar 

  46. E. J. Wolvetang, M. F. Pera, K. S. Zuckerman, Biochem. Biophys. Res. Commun. 363, 610 (2007).

    Article  Google Scholar 

  47. A. Y. Panchin, S. A. Spirin, S. A. Lukyanov, et al., J. Bioinform. Comput. Biol. 6, 759 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Panchin.

Additional information

Original Russian Text © Yu. V. Panchin, 2011, published in Biofizika, 2011, Vol. 56, No. 3, pp. 481–488.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panchin, Y.V. Intercellular channels in animals. BIOPHYSICS 56, 457–463 (2011). https://doi.org/10.1134/S0006350911030225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030225

Keywords

Navigation