Skip to main content
Log in

Study of the reaction of kidney collecting duct principal cells to hypotonic shock. Experiment and mathematical model

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The reaction of rat kidney collecting duct principal cells to hypotonic shock was studied. The changes in cell relative volume were measured using fluorescent dye calcein, and a mathematical model based on our experimental results was developed. It was shown that regulatory volume decrease is mainly provided by significant release of osmolytes from the cell and decrease of the plasma membrane water permeability. Using our model, we calculated the membrane water permeability and found it to decrease from 2 · 10−1 to 2 · 10−2 cm/s. We conclude that for effective RVD to occur, a dramatic increase in the membrane permeability to K+, Cl and organic anions is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Armstrong, PNAS 100, 6257 (2003).

    Article  ADS  Google Scholar 

  2. R. Jacob, D. Piwnica-Worms, R. Horres, M. Liebermanj, J. Gen. Physiol. 83, 47 (1984).

    Article  Google Scholar 

  3. R. Moreton, J. Exp. Biol. 51, 181 (1969).

    Google Scholar 

  4. J. Hernandez, J. Fischbarg, L. S. Liebovitch, J. Theor. Biol. 137, 113 (1989).

    Article  Google Scholar 

  5. J. Hernandez, S. Chifflet, J. Membr. Biol. 176, 41 (2000).

    Article  Google Scholar 

  6. J. Fraser, J. Physiol. 559(2), 459 (2004).

    Article  Google Scholar 

  7. S. Nielsen et al., Physiol. Rev. 82, 205 (2002).

    ADS  Google Scholar 

  8. F. Lang et al., Physiol. Rev. 78, 247 (1998).

    Google Scholar 

  9. K. Strange, Advan. Physiol. Edu. 28, 155 (2004).

    Article  Google Scholar 

  10. E. Hoffmann, I. Lambert, S. Pedersen, Physiol. Rev. 89, 193 (2009).

    Article  Google Scholar 

  11. A.G. Pogorelov, V.N. Pogorelova, Biophysics, 54(3), 336 (2009).

    Article  Google Scholar 

  12. E. I. Solenov, H. Watanabe, G. T. Manley, A. S. Verkman, Am. J. Physiol. Cell. Physiol. 286, C426 (2004).

    Article  Google Scholar 

  13. J. Legato, M. A. Knepper, Physiol. Genomics 13, 179 (2003).

    Google Scholar 

  14. M. Reif, S. Troutman, J. Schafer, J. Clin. Invest. 77, 1291 (1986).

    Article  Google Scholar 

  15. G. Frindt, L. Palmer, Am. J. Physiol. Renal. Fluid. Electrolyte. Physiol. 252, F458 (1987).

    Google Scholar 

  16. G. Frindt, L. Palmer, Am. J. Physiol. Renal. Fluid. Electrolyte. Physiol. 256, F143 (1989).

    Google Scholar 

  17. W. Wang, S. Hebert, G. Giebisch, Annu. Rev. Physiol. 59, 413 (1997).

    Article  Google Scholar 

  18. S. Muto, Physiol. Rev. 81(1), 85 (2001).

    MathSciNet  Google Scholar 

  19. M. Haas, B. Forbush, Annu. Rev. Physiol. 62, 515 (2000).

    Article  Google Scholar 

  20. S. Wall, M. Fischer, P. Mehta, K. Hassell, S. Park, Am. J. Physiol. Renal. Physiol. 280, 913 (2001).

    Google Scholar 

  21. D. E. Goldman, J. Gen. Physiol. 27, 37 (1943).

    Article  Google Scholar 

  22. A. Hodgkin, B. Katz, J. Physiol. 108, 37 (1949).

    Google Scholar 

  23. T. Hill, New York: Academic Press, pp. 1–32 (1977).

  24. P. Lauf, N. Adragna, Cell. Physiol. Biochem. 10, 341 (2000).

    Article  Google Scholar 

  25. L. Mullins, K. Noda, J. Gen. Physiol. 47,117 (1963).

    Article  Google Scholar 

  26. J. Gifford, J. Galla, R. Luke, R. Rick, Am. J. Physiol. 259, F778 (1990).

    Google Scholar 

  27. C. Pappas, B. Koeppen, Am. J. Physiol. 263, F1004 (1992).

    Google Scholar 

  28. B. Stanton, Am. J. Physiol. 256, F862 (1989).

    Google Scholar 

  29. I. Chapman, E. Johnson, J. Kootsey, J. Membrane. Biol. 74, 139 (1983).

    Article  Google Scholar 

  30. L. Wang, G. Ding, Q. Gu, W. Schwarz, Eur. Biophys. J. 39(5), 757 (2010).

    Article  Google Scholar 

  31. A. Dyrda et al., PLoS ONE 5(2), 9447 (2010).

    Article  ADS  Google Scholar 

  32. S. Lee, Z. Shen, D. Robinson, S. Briggs, R. Firtel, Mol. Biol. Cell. Epub ahead of print (2010).

  33. R. Kaunas, P. Nguyen, P. Usami, S. Chien, PNAS 102(44), 15895 (2005).

    Article  ADS  Google Scholar 

  34. H. Multhaupt, A. Yoneda, J. Whiteford, et al., J. Physiol. Pharm. 60, 31 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Solenov.

Additional information

Original Russian Text © A.V. Ilyaskin, G.S. Baturina, D.A. Medvedev, A.P. Ershov, E.I. Solenov, 2011, published in Biofizika, 2011, Vol. 56, No. 3, pp. 550–560.

Translation of the text provided by the authors; some redaction imposed for literacy and comprehensibility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyaskin, A.V., Baturina, G.S., Medvedev, D.A. et al. Study of the reaction of kidney collecting duct principal cells to hypotonic shock. Experiment and mathematical model. BIOPHYSICS 56, 516–524 (2011). https://doi.org/10.1134/S0006350911030092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030092

Keywords

Navigation