Skip to main content
Log in

Induction-resonance energy transfer between the terbium-binding peptide and the red fluorescent proteins DsRed2 and TagRFP

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Two novel FRET-pairs: Tb3+-binding peptide-DsRed2 and Tb3+-binding peptide-TagRFP have been produced based on the terbium-binding peptide and the red fluorescent proteins DsRed2 and TagRFP. Two induction-resonance energy transfer processes in both FRET-pairs have been registered, from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to the acceptor, the chromophore, DsRed2 or TagRFP. The lifetimes of terbium in the presence and absence of the acceptor have been determined. It has been shown that the lifetime of Tb3+ in the presence of 150 mM NaCl decreases in both FRET-pairs. The efficiency of fluorescent resonance transfer from Tb3+ to the acceptor proteins is 28 and 35% for Tb3+-binding peptide-DsRed2 and Tb3+-binding peptide-TagRFP, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Selvin, Annu. Rev. Biophys. Biomol. Struct. 31, 275 (2002).

    Article  Google Scholar 

  2. I. A. Prokhorenko, V. A. Korshun, and Yu. A. Berlin, Bioorg. Khimiya 25, 838 (1999).

    Google Scholar 

  3. P. Mellet, C. Boudier, Y. Mely, and J. G. Bieth, J. Biol. Chem. 273, 9119 (1998).

    Article  Google Scholar 

  4. U. Kubitscheck, M. Kircheis, R. Schweitzer-Stenner, et al., Biophys. J. 60, 307 (1991).

    Article  Google Scholar 

  5. N. Thelwell, S. Millington, A. Solinas, et al., Nucl. Acids Res. 28, 3752 (2000).

    Article  Google Scholar 

  6. X. Chen, B. Zehnbauer, A. Gnirke, and P. Y. Kwok, Proc. Natl. Acad. Sci. USA 94, 10756 (1997).

    Article  ADS  Google Scholar 

  7. E. Soini and H. Kojola, Clin. Chem. 29, 65 (1983).

    Google Scholar 

  8. I. Hemmila and V.-M. Mukkala, Crit. Rev. Clin. Laby. Sci. 38, 441 (2001).

    Article  Google Scholar 

  9. I. Hemmila and V. Laitala, J. Fluoresc. 15, 529 (2005).

    Article  Google Scholar 

  10. A. M. Reynolds, B. R. Sculimbrene, and B. Imperiali, Bioconjugate Chem. 19, 588 (2008).

    Article  Google Scholar 

  11. S. Weissman, J. Chem. Phys. 10, 214 (1942).

    Article  ADS  Google Scholar 

  12. L. J. Martin, B. R. Sculimbrene, and M. Nitz, B. Imperiali, QSAR Comb. Sci. 24, 1149 (2005).

    Article  Google Scholar 

  13. I. D. Clark, I. Hill, M. Sikorska-Walker, et al., FEBS Lett. 333, 96 (1993).

    Article  Google Scholar 

  14. M. Xiao and P. R. Selvin, J. Am. Chem. Soc. 123, 7067 (2001).

    Article  Google Scholar 

  15. N. Hildebrandt, L. J. Charbonniere, and H.-G. Lohmannsroben, J. Biomed. Biotech. 12, 1 (2007).

    Article  Google Scholar 

  16. S. W. Yeh, L. J. Ong, A. N. Glazer, and J. H. Clark, Cytometry 8, 91 (1987).

    Article  Google Scholar 

  17. S. M. Riddle, K. L. Vedvik, G. T. Hanson, and K. W. Clark, Anal. Biochem. 356, 108 (2006).

    Article  Google Scholar 

  18. S. Karasawa, T. Araki, T. Nagai, et al., Biochem. J. 381, 307 (2004).

    Article  Google Scholar 

  19. N. C. Shaner, R. E. Campbell, P. Steinbach, et al., Nat. Biotechnol. 22, 1567 (2004).

    Article  Google Scholar 

  20. J. Sambrook, E. F. Fritisch, and T. Maniatis, Molecular Cloning: a Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory Press, N.Y., 1989).

    Google Scholar 

  21. C. Yanisch-Perron, J. Vieira, and J. Messing, Gene 33, 103 (1985).

    Article  Google Scholar 

  22. L. R. Arslanbaeva, V. V. Zherdeva, T. V. Ivashina, et al., Prikl. Biokhim. Mikrobiol. 46(2), 166 171 (2010).

    Google Scholar 

  23. M. V. Gorbunkov, P. V. Kostryukov, V. B. Morozov, et al., Kvant. Elektron. 35, 1121 (2005).

    Article  ADS  Google Scholar 

  24. M. Cotlet, J. Hofkens, S. Habuchi, et al., Proc. Natl. Acad. Sci. USA 98, 14398 (2001).

    Article  ADS  Google Scholar 

  25. E. M. Merzlyak, J. Goedhart, D. Shcherbo, et al., Nat. Meth. 4, 555 (2007).

    Article  Google Scholar 

  26. D. W. Piston and G.-J. Kremers, Trends Biochem. Sci. 32, 407 (2007).

    Article  Google Scholar 

  27. C. Berney and G. Danuser, Biophysical J. 84, 3992 (2003).

    Article  ADS  Google Scholar 

  28. D. Parker and J. A. G. Williams, in Metal Ions in Biological Systems. The Lanthanides and Their Interrelations with Biosystems, Ed. by H. Sigel, A. Sigel (Marcel Dekker, N.Y., 2003), Vol. 40, pp. 233–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Savitskii.

Additional information

Original Russian Text © L.R. Arslanbaeva, V.V. Zherdeva, T.V. Ivashina, L.M. Vinokurov, V.B. Morozov, A.N. Olenin, A.P. Savitskii, 2011, published in Biofizika, 2011, Vol. 56, No. 3, pp. 389–395.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslanbaeva, L.R., Zherdeva, V.V., Ivashina, T.V. et al. Induction-resonance energy transfer between the terbium-binding peptide and the red fluorescent proteins DsRed2 and TagRFP. BIOPHYSICS 56, 381–386 (2011). https://doi.org/10.1134/S0006350911030043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030043

Keywords

Navigation