Skip to main content
Log in

Polymorphism of genes for catechol-O-methyltransferase (COMT) and hemochromatosis (HFE) in residents of radiocontaminated regions varying in chromosome aberration frequency

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The association between polymorphisms in the COMT and HFE genes, involved in oxidative stress control, on the one hand, and chromosome aberration frequency in lymphocytes, on the other hand, is analyzed in 278 women residents of radiocontaminated sites in Central Russia: the town of Uzlovaya (171 kBq/m2 for 137Cs) in Tula oblast and Klintsovskii raion in Bryansk oblast (322 kBq/m2). The subjects of the study are genotyped by PCR followed by cleavage with appropriate restriction endonucleases and electrophoresis. The subjects are divided into three subgroups according to individual aberration frequencies: 0–2%, 3-4%, and ≥5%. The frequencies of genotypes for COMT and HFE in the subgroups show statistically significant differences. A high chromosome aberration frequency (≥5%) is associated with the HH homozygous genotype for the G1974A (H/L) polymorphism in COMT and CC for C187G in HFE. The heterozygous genotypes CG for C187G in HFE and HL for G1974A (H/L) in COMT are negatively associated with the chromosome aberration frequency, thus being resistance factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 (The National Acad. Press, Washington, 2006).

    Google Scholar 

  2. R. A. Gatti, Radiat. Res. 170, 669 (2008).

    Google Scholar 

  3. C. L. Limoli, M. I. Kaplan, J. W. Phillips, et al., Cancer Res. 57, 4048 (1997).

    Google Scholar 

  4. C. L. Limoli and E. Giedzinski, Neoplasia 5(4), 339 (2003).

    Google Scholar 

  5. E. B. Burlakova, V. F. Mikhailov, and V. K. Mazurik, Radiats. Biol. Radioekologiya 41, 489 (2001).

    Google Scholar 

  6. K. Mitrunen and A. Hirvonen, Mutat. Res. 544, 9 (2003).

    Article  Google Scholar 

  7. R. Stuckey, T. Aldridge, F. L. Lim, et al., Mol. Cell Endocrinol. 253, 22 (2006).

    Article  Google Scholar 

  8. M. I. Balonov and I. A. Zvonova, Radiatsiya Risk, Special issue, 1 (2002).

  9. N. E. Breslow and N. E. Day, Statist. Meths. in Cancer Res., Vol. 1: The Analysis of Case-Control Studies (IARC, Lyon, 1980).

    Google Scholar 

  10. A. V. Sevan’kaev, Radiosensitivity of Human Lymphocyte Chromosomes in the Mitotic Cycle (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  11. A. N. Chebotarev, N. P. Bochkov, L. D. Katosova, and V. I. Platonova, Genetika 37, 848 (2001) [Russ. J. Genet., 37, 699 (2001)].

    Google Scholar 

  12. N. P. Bochkov, A. N. Chebotarev, L. D. Katosova, and V. I. Platonova, Genetika 37, 549 (2001) [Russ. J. Genet., 37, 440 (2001)].

    Google Scholar 

  13. D. Anderson, A. J. Francis, P. Godbert, et al., Environ. Health Perspect. 101(Suppl. 3), 83 (1993).

    Article  Google Scholar 

  14. A. V. Sevan’kaev, G. F. Mikhailova, O. I. Potetnya, et al., Radiats. Biol. Radioekologiya 45, 5 (2005).

    Google Scholar 

  15. V. A. Shevchenko and G. P. Snigireva, Radiats. Biol. Radioekologiya 46, 133 (2006).

    Google Scholar 

  16. V. A. Shevchenko, E. A. Akaeva, V. D. Arutyunyants, et al., in Chernobyl 88: Report of the I All-Union Research and Development Workshop on the Results of the Cure of Effects of the Chernobyl Nuclear Accident, Ed. by E. I. Ignatenko (Chernobyl, 1989), Vol. 3,Part 1, pp. 225–243.

  17. L. Sabatier, B. Dutrillaux, and M. B. Martins, Nature 357, 548 (1992).

    Article  ADS  Google Scholar 

  18. A. L. Brooks, Health Phys. 85, 85 (2003).

    Article  Google Scholar 

  19. I. E. Vorobtsova and A. V. Semenov, Radiats. Biol. Radioekologiya 46, 140 (2006).

    Google Scholar 

  20. V. Yu. Nugis, Med. Radiologiya 41(3), 63 (1996).

    Google Scholar 

  21. M. A. Pilinskaya, A. M. Shemetun, S. S. Dybskii, et al., Int. J. Radiat. Med. 3(1–2), 268 (2001).

    Google Scholar 

  22. L. Hagmar, U. Stromberg, S. E. Bonassi, et al., Cancer Res. 64, 2258 (2004).

    Article  Google Scholar 

  23. I. I. Suskov, N. S. Kuz’mina, V. S. Suskova, et al., Radiats. Biol. Radioekologiya 48, 278 (2008).

    Google Scholar 

  24. I. B. Korzeneva, S. I. Zaichkina, T. V. Malinina, et al., Radiats. Biol. Radioekologiya 48, 517 (2008).

    Google Scholar 

  25. I. B. Korzeneva, S. I. Zaichkina, T. V. Malinina, et al., Radiats. Biol. Radioekologiya 48, 536 (2008).

    Google Scholar 

  26. I. I. Suskov, N. S. Kuz’mina, V. S. Suskova, et al., Radiats. Biol. Radioekologiya 46, 167 (2006).

    Google Scholar 

  27. M. G. Andreassi, I. Foffa, S. Manfredi, et al., Mutat. Res. 666, 57 (2009).

    Article  Google Scholar 

  28. P. Vodicka, R. Kumar, R. Stetina, et al., Carcinogenesis 25, 757 (2004).

    Article  Google Scholar 

  29. J. Tuimala, G. Szekely, H. Wikman, et al., Mutat. Res. 554, 319 (2004).

    Article  Google Scholar 

  30. P. Vodicka, A. Naccarati, L. Vodickova, et al., Environ. Health Perspect. 117(9) A384 (2009).

    Google Scholar 

  31. B. Karahali, S. Sardas, N. A. Kocabas, et al., Mutat. Res. 515, 135 (2002).

    Google Scholar 

  32. A. Hernandez, N. Xamena, S. Gutierrez, et al., Mutat. Res. 606, 12 (2006).

    Google Scholar 

  33. R. J. Sram, P. Rossner, J. Rubes, et al., Mutat. Res. 593, 50 (2006).

    Article  Google Scholar 

  34. L. E. Sal’nikova, D. K. Fomin, T. V. Elisova, et al. Radiats. Biol. Radioekologiya 48, 303 (2008).

    Google Scholar 

  35. I. A. Zamulaeva, L. E. Sal’nikova, T. I. Ivanova, et al., Radiats. Biol. Radioekologiya 49, 389 (2009).

    Google Scholar 

  36. B. Porto, R. Vieira, and G. Porto, Mutat. Res. 673, 37 (2009).

    Google Scholar 

  37. A. E. Doyle and J. D. Yager, Biochim. Biophys. Acta 1780, 27 (2008).

    Google Scholar 

  38. S. Wyllie and J. G. Liehr, Arch. Biochem. Biophys. 346, 180 (1997).

    Article  Google Scholar 

  39. S. Wyllie and J. G. Liehr, Carcinogenesis 19, 1285 (1998).

    Article  Google Scholar 

  40. J. H. Feder, A. Gnirke, W. Thomas, et al., Nature Genet. 13, 399 (1996).

    Article  Google Scholar 

  41. D. K. Moczulski, W. Grzeszczak, and B. Gawlik, Med. Sci. Monit. 7, 441, (2001).

    Google Scholar 

  42. S. V. Mikhailova, V. F. Kobzev, I. V. Kulikov, et al., Genetika 39, 988 (2003) [Rus. J. Genet. 39, 828 (2003)].

    Google Scholar 

  43. T. V. Kondrashova, K. Neriishi, S. Bon, et al., Biochim. Biophys. Acta 1762, 59 (2005).

    Google Scholar 

  44. P. C. Lewontin, The genetic basis of evolutionary change (Columbia University Press, New York, 1974; Mir, Moscow, 1978).

    Google Scholar 

  45. C. Carru, G. M. Pesa, L. Deiana, et al., Mechanisms of Aging and Development 124, 529 (2003).

    Article  Google Scholar 

  46. N. V. Timofeev-Resovskii and Yu. M. Svirezhev, Genetika 3(10), 152 (1967).

    Google Scholar 

  47. Yu. M. Svirezhev and N. V. Timofeev-Resovskii, in Haldane and Modern Biology, Ed. by K. R. Dronamraju (Johns Hopkins Press, Baltimore, 1968), pp. 141–168.

    Google Scholar 

  48. Yu. M. Svirezhev and V. P. Pasekov, Fundamentals of Mathematical Genetics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Ivanova.

Additional information

Original Russian Text © T.I. Ivanova, T.V. Kondrashova, L.I. Krikunova, I.A. Smirnova, N.I. Shentereva, N.I. Sychenkova, E.V. Rykova, I.A. Zharikova, V.A. Khorokhorina, N.I. Ryabchenko, I.A. Zamulaeva, 2010, published in Radiatsionnaya Biologiya. Radioekologiya, 2010, Vol. 50, No. 2, pp. 117–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, T.I., Kondrashova, T.V., Krikunova, L.I. et al. Polymorphism of genes for catechol-O-methyltransferase (COMT) and hemochromatosis (HFE) in residents of radiocontaminated regions varying in chromosome aberration frequency. BIOPHYSICS 55, 1076–1084 (2010). https://doi.org/10.1134/S0006350910060333

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060333

Keywords

Navigation