Skip to main content
Log in

The role of energy substrates in the regulation of force-frequency relationship in the rat myocardium: the influence of ambiocor

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of ambiocor (15 mg/100 ml), which contains natural substrates of energy metabolism, on the contractility of papillary muscle of the right ventricle of rat heart was studied at stimulation frequencies from 0.1 to 3.0 Hz at a temperature of 30 ± 1°C (n = 7). The effect was recorded 20 min after the addition of the preparation. It was demonstrated that ambiocor causes a significant (about 70%), independent of stimulation frequency, suppression of the amplitude of isometric contractions (negative inotropic effect), which is coupled with an increase in the relative value of the rest potentiation effect (a qualitative index of calcium content in SR). The influence of the mixture leads to significant alterations in the time parameters of the “contraction-relaxation” cycle: an increase in the duration of latent period; and a decrease in the time to peak tension and half-relaxation time. The effect of the mixture is partially reversible. During washing off the preparation with the control solution, the qualitative indicators of the contractile activity of papillary muscle are substantially improved in comparison with the initial ones. The character of alterations allows one to assume that the effect of ambiocor in the papillary muscle of the rat heart is realized partly through the suppression of the activity of sarcolemmal calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Ingwall and R. G. Weiss, Circ. Res. 95, 135 (2004).

    Article  Google Scholar 

  2. A. B. Peskov, E. I. Maevsky, and M. L. Uchitel, Assessment of Efficiency of “Small Influences” in the Clinic of Internal Diseases (UlGU, Ul’yanovsk, 2005) [in Russian].

    Google Scholar 

  3. D. M. Bers, Circ. Res. 87, 275 (2000).

    Google Scholar 

  4. K. M. Dibb., H. K. Graham, L. A. Venetucci, et al., Cell Calcium 42, 503 (2007).

    Article  Google Scholar 

  5. S. E. Lehnart, L. S. Maier, and G. Hasenfuss, Heart Fail. Rev. 4, 213 (2009).

    Article  Google Scholar 

  6. M. Periasamy, P. Bhupathy, and G. J. Babu, Cardiovasc. Res. 77, 265 (2008).

    Article  Google Scholar 

  7. J. Koch-Weser and J. R. Blinks, Pharmacol. Rev. 15, 601 (1963).

    Google Scholar 

  8. V. J. A. Schouten and H. E. ter Keurs, J. Mol. Cell. Cardiol. 23, 1039 (1991).

    Article  Google Scholar 

  9. B. Schwinger, H. Reuter, C. Zobel, et al., Basic Res. Cardiol. 94, 159 (1999).

    Article  Google Scholar 

  10. B. D. Stuyvers, A. D. McCulloch, J. Guo, et al., J. Physiol. 544(3), 817 (2002).

    Article  Google Scholar 

  11. M. Endoh, Eur. J. Pharmacol. 500, 73 (2004).

    Article  Google Scholar 

  12. N. Hiranandani, S. Raman, A. Kalyanasundaram, et al., Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R30 (2007).

    Article  Google Scholar 

  13. L. D. Parilak, D. G. Taylor, Y. Song, et al., Can. J. Physiol. Pharmacol. 87(1), 69 (2009).

    Article  Google Scholar 

  14. L. A. Mulineri, G. Hasenfuss, B. Leavitt, et al., Circulation 85, 1743 (1992).

    Google Scholar 

  15. B. Pieske, M. Sutterlin, S. Schmidt-Schwed, et al., J. Clin. Invest. 98, 764 (1996).

    Article  Google Scholar 

  16. R. S. Balaban, J. Mol. Cell. Cardiol. 34, 1259 (2002).

    Article  Google Scholar 

  17. A. Lukas and R. Bose, Arch. Pharmacol. 334, 480 (1986).

    Article  Google Scholar 

  18. J. G. Mill, D. V. Vassallo, and C. M. Leite, Braz. J. Med. Biol. Res. 25, 399 (1992).

    Google Scholar 

  19. Z. J. Penefsky, Comp. Biochem. Physiol. 109(1), 1 (1994).

    Article  ADS  Google Scholar 

  20. J. Mizuno, Sh. Moria, M. Otsuji, et al., Int. Heart J. 50, 389 (2009).

    Article  Google Scholar 

  21. D. S. Bocalini and P. J. F. Tucci, Int. Heart J. 50, 643 (2009).

    Article  Google Scholar 

  22. O. V. Nakipova, N. M. Zakharova, L. A. Andreeva, et al., J. Cryobiol. 55, 173 (2007).

    Article  Google Scholar 

  23. A. S. Averin, N. M. Zakharova, D. A. Ignat’ev, et al., Biophysics, 55(5), 910 (2010).

    Article  Google Scholar 

  24. M. M. Monasky and P. M. L. Janssen, J. Comp. Physiol. 179, 469 (2009).

    Google Scholar 

  25. H. Komai and B. F. Rusy, Cardiovasc. Res. 27(5), 801 (1993).

    Article  Google Scholar 

  26. A. R. Mattiazzi and A. Garay, Arch. Int. Physiol. Biochem. 91, 133 (1983).

    Google Scholar 

  27. K. R. Sipido, M. M. Maes, and F. Van De Werf, Circ. Res. 81, 1034 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Nakipova.

Additional information

Original Russian Text © O.V. Nakipova, A.S. Averin, N.M. Zakharova, M.L. Uchitel, E.V. Grishina, L.A. Bogdanova, E.I. Maevsky, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 1124–1131.

Translation of the text provided by the authors; redaction imposed solely for comprehensibility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakipova, O.V., Averin, A.S., Zakharova, N.M. et al. The role of energy substrates in the regulation of force-frequency relationship in the rat myocardium: the influence of ambiocor. BIOPHYSICS 55, 1019–1024 (2010). https://doi.org/10.1134/S0006350910060229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060229

Keywords

Navigation