Skip to main content
Log in

Cytomechanics of oscillatory contractions. Modeling the longitudinal dynamics of Physarum polycephalum protoplasmic strands

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A mathematical model of the longitudinal dynamics of an isolated strand of the Physarum polycephalum plasmodium has been constructed. Its contractile system is considered as a continual viscoelastic medium with passive and active components. The mathematical description of the longitudinal dynamics of the plasmodial strand is reduced to a system of three first-order differential equations, whose variables are its active stress, deformation, and the intracellular concentration of calcium ions. The model is based on the hypothesis that there exists a feedback loop, which appears because of the influence of strand stretching on the rate of the release of calcium ions, which in turn control the active contraction and deformation of the strand. Nonlinear interactions between the variables evoke a loss of the stationary state stability and a self-excitation of mechanochemical autooscillations when the external load exceeds some critical value. The results of numerical solutions of the model with the empirically determined viscoelastic parameters are in good agreement with the available experimental data and testify to the adequacy of the description of strand dynamics by the mathematical model in which the contractile apparatus is a part of the cellular control system. In particular, this model well simulates the form and duration of transient mechanochemical processes observed under isotonic and isometric conditions immediately after strand isolation, as well as the subsequent excitation of autooscillations of the contractile activity and their activation by strand stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tero, R. Kobayashi, and T. Nakagaki, Physica D 205, 125 (2005).

    Article  MATH  ADS  Google Scholar 

  2. R. Kobayashi, A. Tero, and T. Nakagaki, J. Math. Biol. 53, 273 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. E. Ingberg and I. I. Tensegrity, J. Cell Sci. 116, 1397 (2003).

    Article  Google Scholar 

  4. V. Vogel and M. Sheetz, Nature Rev. Mol. Cell Biol. 7, 265 (2006).

    Article  Google Scholar 

  5. X. Trepat, L. Deng, S. S. An, et al., Nature 447, 592 (2007).

    Article  ADS  Google Scholar 

  6. V. A. Teplov, Yu. M. Romanovsky, and O. A. Latushkin, BioSystems 24, 269 (1991).

    Article  Google Scholar 

  7. Yu. M. Romanovsky and V. A. Teplov, Usp. Fiz. Nauk 165(5), 555 (1995).

    Article  Google Scholar 

  8. V. A. Teplov, Yu. M. Romanovsky, D. A. Pavlov, and W. Alt, in Dynamics of Cell and Tissue Motion, Ed. by W. Alt, A. Deutsch and G. A. Dunn (Birkhaeuser, Basel, 1997), pp. 83–92.

    Google Scholar 

  9. D. A. Pavlov, Yu. M. Romanovsky, and V. A. Teplov, Biofizika 41(1), 146 (1996).

    Google Scholar 

  10. V. A. Teplov, E. A. Khors, D. A. Pavlov, et al., in Nonlinear Dynamics and Structures in Biology and M edicine: Optical and Laser Technologies, Ed. by V.V. Tuchin (Proc. SPIE, 1997), Vol. 3053, pp. 2–8.

  11. V. A. Teplov, V. V. Mitrofanov, and Yu. M. Romanovsky, Biofizika 50(4), 704 (2005) [Biophysics 50, 618].

    Google Scholar 

  12. N. Kamiya, Ann. Rev. Plant Physiol. 32, 205 (1981).

    Article  Google Scholar 

  13. W. Stockem and K. Brix, Int. Rev. Cytol. 149, 145 (1994).

    Article  Google Scholar 

  14. V. A. Teplov, S. I. Beylina, and Yu. M. Romanovsky, Fiziol. Rast. 45(2), 168 (1998).

    Google Scholar 

  15. S. Takagi and T. Ueda, Physica D 237, 420 (2008).

    Article  ADS  Google Scholar 

  16. V. G. Ermakov and A. V. Priezzhev, Biofizika 29(1), 106 (1984).

    Google Scholar 

  17. Y. Yoshimoto and N. Kamiya, Protoplasma 95, 89 (1978).

    Article  Google Scholar 

  18. F. E. Il’yasov, M. A. Morozov, and V. A. Teplov, Biofizika 53(6), 1044 (2008) [Biophysics 53, 580].

    Google Scholar 

  19. M. Fleischer and K. E. Wohlfarth-Bottermann, Cytobiologie 10, 339 (1975).

    Google Scholar 

  20. K.E. Wohlfarth-Bottermann and M. Fleischer, Cell Tiss. Res. 165, 327 (1976).

    Article  Google Scholar 

  21. V. A. Teplov, Protoplasma, Suppl. 1: Cell Dynamics, 81 (1988).

  22. Z. Baranowski and V. A. Teplov, Cell Biol. Int. Reports 16, 1091 (1992).

    Article  Google Scholar 

  23. S. I. Beylina, N. B. Matveeva, A. A. Klyueva, and V. A. Teplov, Biol. Membrany 21(2), 112 (2004).

    Google Scholar 

  24. Y. Yoshimoto and N. Kamiya, Cell Struct. Funct. 9, 135 (1984).

    Article  Google Scholar 

  25. N. B. Matveeva, A. A. Klyueva, V. A. Teplov, and S. I. Beylina, Biol. Membrany 20(1), 66 (2003).

    Google Scholar 

  26. N. B. Matveeva, S. I. Beylina, and V. A. Teplov, Biol. Membrany 23(3), 223 (2006).

    Google Scholar 

  27. N. B. Matveeva, V. A. Teplov, and S. I. Beylina, Biol. Membrany 27(1), 1 (2010).

    Article  Google Scholar 

  28. G. F. Oster and G. M. Odell, Cell Motility 4, 469 (1984).

    Article  Google Scholar 

  29. G. M. Odell, J. Embriol. Exp. Morph. 83, Suppl., 261 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Teplov.

Additional information

Original Russian Text © V.A. Teplov, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 1083–1093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplov, V.A. Cytomechanics of oscillatory contractions. Modeling the longitudinal dynamics of Physarum polycephalum protoplasmic strands. BIOPHYSICS 55, 987–995 (2010). https://doi.org/10.1134/S0006350910060175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060175

Keywords

Navigation