Skip to main content
Log in

Mathematical Model for Rhythmic Protoplasmic Movement in the True Slime Mold

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays “smart” behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamiya N., Nakajima H.(1955): Some aspects of rhythmicity of the protoplasmic streaming in the myxomycete plasmodium. Jpn. J. Bot. 15: 49–55

    Google Scholar 

  2. Kamiya N., Takata T.(1967): Movement of the myxomycete plasmodium. V. The motive force of endoplasm-rich and endoplasm-poor plasmodia. Proc. Jpn. Acad. 43: 537–540

    Google Scholar 

  3. Kamiya N., Yoshimoto Y., Matsumura F.(1982): Contraction–relaxation cycle of Physarum cytoplasm: concomitant changes in intraplasmodial ATP and Ca++ concentrations. Cold Spring Harbor Symp. Quant. Biol. 46: 77–84

    Google Scholar 

  4. Kuramoto Y.(1984): Chemical Oscillations, Waves and Turbulence. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  5. Matsumoto K., Ueda T., Kobatake Y.(1986): Propagation of phase wave in relation to tactic responses by the plasmodium of Physarum polycephalum. J. Theor. Biol. 122: 339–345

    Article  Google Scholar 

  6. Matsumoto K., Ueda T., Kobatake Y. (1988): Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. J. Theor. Biol. 131: 175–182

    Article  Google Scholar 

  7. Miyake Y., Tabata S., Murakami H., Yano M., Shimizu H. (1996): Environment-dependent self organization of positional information field in chemotaxis of Physarum plasmodium. J. Theor. Biol. 178:341–353

    Article  Google Scholar 

  8. Nagai R., Yoshimoto Y., Kamiya N. (1978). Cyclic production of tension generation force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology. J. Cell Sci. 33:121–136

    Google Scholar 

  9. Naib-Majani W., Stockem W., Wohlfarth-Bottermann K.E. (1982). Immunocytochemistry of acellular slime mold it Physarum polycephalum. II. Spatial organization of cytoplasmic actin. Eur. J. Cell Biol. 28:103–114

    Google Scholar 

  10. Nakagaki T., Yamada H., Ito M. (1999). Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum plasmodium. J. Theor. Biol. 197:497–506

    Article  Google Scholar 

  11. Nakagaki T., Yamada H., Tóth A. (2000). Maze-solving by an amoeboid organism. Nature 407:470–470

    Article  Google Scholar 

  12. Nakagaki T. (2001). Smart behavior of true slime mold in labyrinth. Res. Microbiol. 152:767–770

    Article  Google Scholar 

  13. Nakagaki T., Yamada H., Tóth A. (2001). Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92:47–52

    Article  Google Scholar 

  14. Nakagaki T., Yamada H., Hara M. (2004). Smart network solution by an amoeboid organism. Biophys. Chem. 107:1–5

    Article  Google Scholar 

  15. Nakamura S., Yoshimoto Y., Kamiya N. (1982). Oscillation in surface pH of the Physarum plasmodium. Proc. Jpn. Acad. 58:270–273

    Article  Google Scholar 

  16. Nakamura A., Kohama K. (1999). Calcium Regulation of the actin-myoshin interaction of Physarum polycephalum. Int. Rev. Cytol. 191:53–98

    Article  Google Scholar 

  17. Oster G.F., Odell G.M. (1984). Mechanics of cytogels I: oscillations in Physarum. Cell Motil. 4:469–503

    Article  Google Scholar 

  18. Takahashi K., Uchida G., Hu Z.-S., Tsuchiya Y. (1997). Entrainment of the self-sustained oscillation in a Physarum polycephalum strand as a one-dimensionally coupled oscillator system. J. Theor. Biol. 184:105–110

    Article  Google Scholar 

  19. Takamatsu A., Fujii T., Endo I. (2000). Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys. Rev. Lett. 85:2026–2029

    Article  Google Scholar 

  20. Takamatsu A., Tanaka R., Yamada H., Nakagaki T., Fujii T., Endo I. (2000). Spatio-temporal symmetry in rings of coupled biological oscillators of Physarum Plasmodium. Phys. Rev. Lett. 87:781021–781024

    Google Scholar 

  21. Teplov V.A., Romanovsky Yu M., Latushkin O.A. (1991). A continuum model of contraction waves and protoplasm streaming in strands of Physarum polycephalum. Biosystems 24:269–289

    Article  Google Scholar 

  22. Teplov, V.A., Romanovsky, Yu M., Pavlov, Alt, V.: Auto-oscillatory processes and feedback mechanisms in Physarum plasmodium motility. In: Alt, Deutsh, Dunn. Dynamics of Cell and Tissue Motion pp. 83–92 (1997)

  23. Ueda T., Gotz von Olenhusen K. (1978). Replacement of endoplasm with artificial media in plasmodial strands of Physarum polycephalum. Exp. Cell Res. 116:55–62

    Article  Google Scholar 

  24. Ueda T., Matsumoto K., Akitaya T., Kobatake Y. (1986). Spatial and temporal organization of intracellular adenosine nucleotide and cyclic nucleotides in relation to rhythmic motility in Physarum polycephalum. Exp. Cell Res. 162:486–494

    Article  Google Scholar 

  25. Ueda T., Matsumoto K., Akitaya T., Kobatake Y. (1986). Spatial and temporal organization of intracellular adenosine nucleotide and cyclic nucleotides in relation to rhythmic motility in Physarum polycephalum. Exp. Cell Res. 162:486–494

    Article  Google Scholar 

  26. Ueda T., Nakagaki T., Kobatake Y. (1988). Patterns in intracellular ATP distribution and rhythmic contraction in relation to amoeboid locomotion in the plasmodium of Physarum polycephalum. Protoplasma Suppl. 1:51–56

    Google Scholar 

  27. Ueda T. (1995). Spatio-temporal dynamics of glycolysis and cellular metabolism: toward intelligence by nonlinear chemical processes. Sens. Mater. 7:147–157

    Google Scholar 

  28. Yoshimoto Y., Matsumura F., Kamiya N. (1981). Simultaneous oscillations of Ca2+ efflux and tension generation in the permealized plasmodial strand of Physarum. Cell Motil. 1:433–443

    Article  Google Scholar 

  29. Yoshimoto Y., Sakai T., Kamiya N. (1981). ATP oscillation in Physarum plasmodium. Protoplasma 109:159–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, R., Tero, A. & Nakagaki, T. Mathematical Model for Rhythmic Protoplasmic Movement in the True Slime Mold. J. Math. Biol. 53, 273–286 (2006). https://doi.org/10.1007/s00285-006-0007-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0007-0

Keywords

Navigation