Skip to main content
Log in

Use of molecular dynamics simulation in interpreting the atomic force microscopy data

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A new approach to interpreting and refining the atomic force microscopy (AFM) data, based on comparing them with the output of computer-simulated probe scanning, has been tested with lysozyme. Distinct AFM images were obtained experimentally for individual lysozyme monomers adsorbed from a clear aqueous solution onto a mica wafer. Two steps of simulations were performed to reproduce the environment and processes in the AFM experiment. First, we used the molecular dynamics software (NAMD) to model the structure of lysozyme adsorbed from a water solution onto a silicon oxide support (the latter was modeled manually according to its crystal structure). Second, we applied molecular mechanics to reproduce probe tip interactions with the object. As a result, we have obtained the lysozyme surface height as a function of horizontal coordinates. Comparison with the real AFM data gave a fair fit in the shape of lysozyme molecules but a significant difference in size. Analysis of the possible causes of this discrepancy indicated that more detailed simulations of AFM imaging with fuller account of the experimental conditions are needed to reach a better correspondence. The first results of testing our approach provide sufficient information for improving the accuracy in further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Mironov, Basics of Scanning Probe Microscopy (Tekhnosfera, Moscow, 2004) [in Russian].

    Google Scholar 

  2. C. Bustamante and D. Keller, Scanning Force Microscopy in Biology. Physics Today (1995) 32–38.

  3. R. W. Caprick and M. Salmeron, Chem. Rev. 1163 (1997).

  4. D. R. Louder and B. A. Parkinson, Analyt. Chem. 67(9), 297 (1995).

    Article  Google Scholar 

  5. M. O. Gallyamov and I. V. Yaminskii, http://spm.genebee.msu.ru.

  6. N. B. Matsko, Ultramicroscopy 107(2–3), 95 (2007).

    Article  Google Scholar 

  7. G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir 10(2) 354 (1994).

    Article  Google Scholar 

  8. V. T. Moy, E. L. Florin, and H. E. Gaub, Colloids Surfaces A 93, 343 (1994).

    Article  Google Scholar 

  9. P. Hinterdorfer, W. Baumgartner, H. J. Gruber, et al., Proc. Natl. Acad. Sci. USA 93, 3477 (1996).

    Article  ADS  Google Scholar 

  10. A. A. Bukharaev, D. V. Ovchinnikov, and A. A. Bukharaeva, Zavod. Lab. 5, 10 (1997).

    Google Scholar 

  11. M. O. Gallyamov, Candidate’s Dissertation in Physics & Math. (MSU, 1999).

  12. J. D. Westbrook and P. M. D. Fitzgerald, in The PDB format, mmCIF formats, and other data formats. Structural Bioinformatics, 2nd ed. (John Wiley & Sons, Inc. 2009), pp. 271–291.

  13. J. L. Choi and D. T. Gethin, Nanotechnology 20 (2009), 065702 (2009).

    Article  ADS  Google Scholar 

  14. D. T. Kim, H. W. Blanch, and C. J. Radke, Langmuir 18(15), 5841 (2002).

    Article  Google Scholar 

  15. C. E. Ekuma, E. I. Ugwu, and N. E. Idenyi, J. Appl. Sci. 6(9), 1982 (2006).

    Article  ADS  Google Scholar 

  16. M. R. Bruzzesi, E. Chiancone, and E. Antonini, Biochemistry 4(9), 1796 (1965).

    Article  Google Scholar 

  17. E. V. Ukraintsev, G. A. Kiselev, A. A. Kudrinskii, et al., Vysokomol. Soed. A 49(1), 1 (2007).

    Google Scholar 

  18. M. Malisauskas, J. Ostman, A. Darinskas, et al., J. Biol. Chem. 280(8), 6269 (2005).

    Article  Google Scholar 

  19. M. Malisauskas, A. Darinskas, V. V. Zamotin, et al., Biochemistry (Moscow) 71(5), 505 (2006).

    Article  Google Scholar 

  20. K. Kubiak and P. Mulheran, Proc. NIC Workshop 40, 273 (2008).

    Google Scholar 

  21. E. Carlsson, E. Hyltner, T. Arnebrant, et al., J. Phys. Chem. B 108(28), 9871 (2004).

    Article  Google Scholar 

  22. S. Ravichandran, J. D. Mandura, and J. Talbot, J. Phys. Chem. B 105, 3610 (2001).

    Article  Google Scholar 

  23. E. A. Ermakova, Strukt. Dinam. Molek. Sistem X(2), 191 (2003).

    Google Scholar 

  24. J. C. Phillips, R. Braun, W. Wang, et al., J. Comput. Chem. 26(16), 1781 (2005).

    Article  Google Scholar 

  25. S. Benkner, C. Schroder, M. Lucka, and O. Steinhauser, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2008), 5072 LNCS (Part 1), 1036–1051.

  26. S. W. Schneider, J. LaMermer, R. M. Henderson, and H. Oberleithner, Pflug. Arch. Eur. J. Physiol. 435(3), 362 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Godsie.

Additional information

Original Russian Text © M.G. Godsie, A.P. Tolstova, I.V. Oferkin, 2010, published in Biofizika, 2010, Vol. 55, No. 3, pp. 415–423.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godsie, M.G., Tolstova, A.P. & Oferkin, I.V. Use of molecular dynamics simulation in interpreting the atomic force microscopy data. BIOPHYSICS 55, 370–376 (2010). https://doi.org/10.1134/S0006350910030048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910030048

Key words

Navigation