Skip to main content

Atomic-Scale Contrast Formation in AFM Images on Molecular Systems

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Imaging individual molecules with atomic resolution is now possible using non-contact atomic force microscopy (AFM). In all cases where atomic resolution imaging of molecules was demonstrated, chemically passivated tips were used. This chapter will discuss the factors influencing the atomic scale imaging of molecular systems. We will first discuss the effect of the tip passivation on the atomic scale contrast. Subsequently, we will consider the factors affecting the quantitative details of the apparent atomic positions (background from the neighbouring atoms, flexibility of the tip apex and non-planar samples). Finally, we will discuss how the tip flexibility affects the appearance of the inter- and intramolecular bonds imaged with AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009)

    Article  ADS  Google Scholar 

  2. Y. Sugimoto, P. Pou, O. Custance, P. Jelínek, M. Abe, R. Perez et al., Science 322, 413 (2008)

    Article  ADS  Google Scholar 

  3. J. Welker, A.J. Weymouth, F.J. Giessibl, ACS Nano. 7, 7377 (2013)

    Article  Google Scholar 

  4. L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián et al., Science 337, 1326 (2012)

    Article  ADS  Google Scholar 

  5. F. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nanotech. 7, 227 (2012)

    Article  ADS  Google Scholar 

  6. J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng, X. Qiu, Science 342, 611 (2013)

    Article  ADS  Google Scholar 

  7. L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W.M. Abdel-Mageed et al., Nat. Chem. 2, 821 (2010)

    Article  Google Scholar 

  8. F. Mohn, J. Repp, L. Gross, G. Meyer, M. Dyer, M. Persson, Phys. Rev. Lett. 105, 266102 (2010)

    Article  ADS  Google Scholar 

  9. N. Pavliček, B. Fleury, M. Neu, J. Niedenführ, C. Herranz-Lancho, M. Ruben et al., Phys. Rev. Lett. 108, 086101 (2012)

    Article  ADS  Google Scholar 

  10. F. Albrecht, M. Neu, C. Quest, I. Swart, J. Repp, J. Am. Chem. Soc. 135, 9200 (2013)

    Article  Google Scholar 

  11. D.G. de Oteyza, P. Gorman, Y.C. Chen, S. Wickenburg, A. Riss, D.J. Mowbray et al., Science 340, 1434 (2013)

    Article  ADS  Google Scholar 

  12. A. Riss, S. Wickenburg, P. Gorman, L.Z. Tan, H.Z. Tsai, D.G. de Oteyza et al., Nano. Lett. 14, 2251 (2014)

    Article  ADS  Google Scholar 

  13. F. Mohn, B. Schuler, L. Gross, G. Meyer, Appl. Phys. Lett. 102, 073109 (2013)

    Article  ADS  Google Scholar 

  14. Z. Sun, M.P. Boneschanscher, I. Swart, D. Vanmaekelbergh, P. Liljeroth, Phys. Rev. Lett. 106, 046104 (2011)

    Article  ADS  Google Scholar 

  15. M.P. Boneschanscher, S.K. Hämäläinen, P. Liljeroth, I. Swart, ACS Nano. 8, 3006 (2014)

    Article  Google Scholar 

  16. M. Neu, N. Moll, L. Gross, G. Meyer, F.J. Giessibl, J. Repp, Phys. Rev. B 89, 205407 (2014)

    Article  ADS  Google Scholar 

  17. P. Hapala, G. Kichin, C. Wagner, F.S. Tautz, R. Temirov, P. Jelínek, Phys. Rev. B 90, 085421 (2014)

    Article  ADS  Google Scholar 

  18. S.K. Hämäläinen, N. van der Heijden, J. van der Lit, S. den Hartog, P. Liljeroth, I. Swart, Phys. Rev. Lett. 113, 186102 (2014)

    Article  ADS  Google Scholar 

  19. G.H. Enevoldsen, H.P. Pinto, A.S. Foster, M.C.R. Jensen, A. Kühnle, M. Reichling et al., Phys. Rev. B 78, 045416 (2008)

    Article  ADS  Google Scholar 

  20. P. Pou, S.A. Ghasemi, P. Jelínek, T. Lenosky, S. Goedecker, R. Perez, Nanotechnology 20, 264015 (2009)

    Article  ADS  Google Scholar 

  21. M. Ondráček, P. Pou, V. Rozsíval, C. González, P. Jelínek, R. Pérez, Phys. Rev. Lett. 106, 176101 (2011)

    Article  ADS  Google Scholar 

  22. J. Welker, F.J. Giessibl, Science 336, 444 (2012)

    Article  ADS  Google Scholar 

  23. A. Yurtsever, D. Fernández-Torre, C. González, P. Jelínek, P. Pou, Y. Sugimoto et al., Phys. Rev. B 85, 125416 (2012)

    Article  ADS  Google Scholar 

  24. M.P. Boneschanscher, J. van der Lit, Z. Sun, I. Swart, P. Liljeroth, D. Vanmaekelbergh, ACS Nano. 6, 10216 (2012)

    Article  Google Scholar 

  25. M. Schneiderbauer, M. Emmrich, A.J. Weymouth, F.J. Giessibl, Phys. Rev. Lett. 112, 166102 (2014)

    Article  ADS  Google Scholar 

  26. D.M. Eigler, C.P. Lutz, W.E. Rudge, Nature 352, 600 (1991)

    Article  ADS  Google Scholar 

  27. L. Bartels, G. Meyer, K.H. Rieder, Appl. Phys. Lett. 71, 213 (1997)

    Article  ADS  Google Scholar 

  28. S. Loth, K. von Bergmann, M. Ternes, A.F. Otte, C.P. Lutz, A.J. Heinrich, Nat. Phys. 6, 340 (2010)

    Article  Google Scholar 

  29. F.J. Giessibl, Appl. Phys. Lett. 73, 3956 (1998)

    Article  ADS  Google Scholar 

  30. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  31. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Google Scholar 

  32. J. Coraux, A.T. N‘Diaye, C. Busse, T. Michely. Nano. Lett. 8, 565 (2008)

    Google Scholar 

  33. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N’Diaye et al., Phys. Rev. Lett. 102, 056808 (2009)

    Article  ADS  Google Scholar 

  34. J. Coraux, T.N. Plasa, C. Busse, T. Michely, New J. Phys. 10, 043033 (2008)

    Article  Google Scholar 

  35. S.K. Hämäläinen, M.P. Boneschanscher, P.H. Jacobse, I. Swart, K. Pussi, W. Moritz et al., Phys. Rev. B 88, 201406 (2013)

    Article  ADS  Google Scholar 

  36. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  ADS  Google Scholar 

  37. P.J. Feibelman, Phys. Rev. B 77, 165419 (2008)

    Article  ADS  Google Scholar 

  38. J. van der Lit, M.P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti et al., Nat. Commun. 4, 2023 (2013)

    Google Scholar 

  39. Z. Yang, M. Corso, R. Robles, C. Lotze, R. Fitzner, E. Mena-Osteritz et al., ACS Nano. 8, 10715 (2014)

    Article  Google Scholar 

  40. G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Science 317, 219 (2007)

    Article  ADS  Google Scholar 

  41. M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart et al., Phys. Rev. B 88, 075429 (2013)

    Article  ADS  Google Scholar 

  42. E. Cockayne, G.M. Rutter, N.P. Guisinger, J.N. Crain, P.N. First, J.A. Stroscio, Phys. Rev. B 83, 195425 (2011)

    Article  ADS  Google Scholar 

  43. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg et al., Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  44. L. Yang, C.H. Park, Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  45. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  46. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  47. M. Koch, F. Ample, C. Joachim, L. Grill, Nat. Nanotech. 7, 713 (2012)

    Article  ADS  Google Scholar 

  48. B. Schuler, W. Liu, A. Tkatchenko, N. Moll, G. Meyer, A. Mistry et al., Phys. Rev. Lett. 111, 106103 (2013)

    Article  ADS  Google Scholar 

  49. N. Moll, L. Gross, F. Mohn, A. Curioni, G. Meyer, New J. Phys. 12, 125020 (2010)

    Article  ADS  Google Scholar 

  50. F.J. Giessibl, Appl. Phys. Lett. 78, 123 (2001)

    Article  ADS  Google Scholar 

  51. A.M. Sweetman, S.P. Jarvis, H. Sang, I. Lekkas, P. Rahe, Y. Wang et al., Nat. Commun. 5, 3931 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are indebted to all our co-authors who have contributed to the work described in this chapter. In particular, we thank Ingmar Swart, Mark Boneschanscher, Joost van der Lit, Zhixiang Sun and Daniël Vanmaekelbergh from Utrecht University, where all the experiments shown in this chapter were conducted, for a fruitful collaboration. This research was supported he European Research Council (ERC-2011-StG No. 278698 “PRECISE-NANO”) and the Academy of Finland through its Centre of Excellence “Low-temperature quantum phenomena and devices” (project no. 250280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Liljeroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schulz, F., Hämäläinen, S., Liljeroth, P. (2015). Atomic-Scale Contrast Formation in AFM Images on Molecular Systems. In: Morita, S., Giessibl, F., Meyer, E., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15588-3_10

Download citation

Publish with us

Policies and ethics