Skip to main content
Log in

Analysis of single unit activity evoked by tones amplitude-modulated with low-frequency noise in frog medulla

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A method of constructing shuffled autocorrelation functions (SACF) was used to characterize single units in the dorsal medullar nucleus of the common frog (Rana temporaria). A continuous characteristic frequency tone modulated by repeating pieces of low-frequency noise was used as a stimulus. SACF was calculated as the correlation between the firing discharges evoked by different repeating pieces of the low-frequency noise. This approach obviates the influence of refractoriness and also considerably increases the sample representativity. Comparison of the SACF with the conventional ACF permits estimating the temporal dynamics of changes in the postspike excitability of the neuron. Analysis of several examples demonstrates the possibility of facilitation just after the period of absolute refractoriness in some tonic units. Neurons exhibiting only a phasic response to the onset of nonmodulated voice-frequency pieces were able to selectively respond to special moments of noise amplitude modulation. These cells demonstrate extremely high synchronism of reaction. We also describe a neuron characterized by an intrinsic periodicity of firing not connected with the dynamics of arriving stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACF:

autocorrelation function

CFq:

characteristic frequency

DISI:

distribution of interspike intervals

DN:

(medullar) dorsal nucleus

HF:

hazard function

SA:

spontaneous activity

SACF:

shuffled autocorrelation function

SyCo:

synchronization coefficient

References

  1. L. A. Jeffress, J. Comp. Physiol. Psychol. 41, 35 (1948).

    Article  Google Scholar 

  2. B. J. Fischer, G. B. Christianson, and J. L. Pena, J. Neurosci. 6, 8107 (2008).

    Article  Google Scholar 

  3. G. E. Loeb, M. W. White, and M. M. Merzenich, Biol. Cybern. 47(3), 149 (1983).

    Article  Google Scholar 

  4. E. Balaguer-Ballester, M. Coath, and S. L. Denham, Biol. Cybern. 97, 479 (2007).

    Article  Google Scholar 

  5. D. O. Kim, J. G. Sirianni, and S. O. Chang, Hear. Res. 45, 95 (1990).

    Article  Google Scholar 

  6. D. H. Louage, M. van der Heijden, and P. X. Joris, J. Neurophysiol. 91, 2051 (2004).

    Article  Google Scholar 

  7. D. H. Louage, M. van der Heijden, and P. X. Joris, J. Neurosci. 25, 1560 (2005).

    Article  Google Scholar 

  8. P. X. Joris, D. H. Louage, and M. van der Heijden, J. Neurophysiol. 99, 1942 (2008).

    Article  Google Scholar 

  9. S. Yang and A. S. Feng, J. Neurophysiol. 98, 1953 (2007).

    Article  Google Scholar 

  10. N. G. Bibikov, Biofizika 20, 887 (1975).

    Google Scholar 

  11. N. G. Bibikov, Akust. Zh. 48, 447 (2002).

    Google Scholar 

  12. N. G. Bibikov and T. V. Kalinkina, Zh. Evol. Biokhim. Fiziol. 18, 491 (1982).

    Google Scholar 

  13. H. M. Kaplan, Proc. Fed. Am. Soc. Exp. Biol. 28, 1541 (1969).

    Google Scholar 

  14. R. P. Gaumond, D. O. Kim, and C. E. Molnar, J. Acoust. Soc. Am. 74, 1392 (1983).

    Article  ADS  Google Scholar 

  15. N. G. Bibikov and G. A. Ivanitskii, Biofizika 30, 141 (1985).

    Google Scholar 

  16. P. X. Joris, D. H. Louage, L. Cardoen, and M. van der Heijden, Hear Res. 216–217, 19 (2006).

    Article  Google Scholar 

  17. N. G. Bibikov and A. B. Dymov, in Proc. XIII Session of the Russia Acoustic Society (GEOS, Moscow, 2003), Vol. 3 [in Russian].

    Google Scholar 

  18. N. G. Bibikov and A. B. Dymov, in Proc. 9th All-Russia Conf. “Neuroinformatics 2007” (2007), Vol. 2, p. 19 [in Russian].

    Google Scholar 

  19. N. G. Bibikov and A. B. Dymov, Biofizika 52, 1073 (2007).

    Google Scholar 

  20. N. G. Bibikov, F. Samson, and T. Imig, Ros. Fiziol. Zh. I.M. Sechenova 89, 682 (2003).

    Google Scholar 

  21. N. G. Bibikov, F. Samson, and T. Imig, Society of Neuroscience. Abstract Viewer / Hiterary Planner. Washington DC, 2003. Program no. 387.6.

  22. M. McLaughlin, M. van der Heijden, and P. X. Joris, J. Neurosci. 28(41), 10206 (2008).

    Article  Google Scholar 

  23. P. X. Joris, D. H. Louage, and M. van der Heijden, J. Neurophysiol. 99, 1942 (2008).

    Article  Google Scholar 

  24. S. E. Street and P. B. Manis, J. Neurophysiol. 91, 4162 (2007).

    Article  Google Scholar 

  25. N. G. Bibikov and A. B. Dymov, Sensor. Sistemy 23, 246 (2009).

    Google Scholar 

  26. G. T. Gdowski and H. F. Voigt, Ann. Biomed. Engin. 26, 473.

  27. N. G. Bibikov, Acustica1 31, 310 (1974).

    Google Scholar 

  28. N. G. Bibikov, J. Comp. Physiol. ser. A 173, 123 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Additional information

Original Russian Text © N.G. Bibikov, S.V. Nizamov, 2009, published in Biofizika, 2009, Vol. 54, No. 5, pp. 921–934.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibikov, N.G., Nizamov, S.V. Analysis of single unit activity evoked by tones amplitude-modulated with low-frequency noise in frog medulla. BIOPHYSICS 54, 637–647 (2009). https://doi.org/10.1134/S0006350909050157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909050157

Key words

Navigation