Skip to main content
Log in

Transition processes in stratum corneum model lipid membranes with a mixture of free fatty acids

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The hydration of model membranes based on ceramide 6 with a mixture of free fatty acids most commonly encountered in the native lipid matrix of stratum corneum, the outermost layer of the mammalian skin, has been studied by neutron diffraction. Membrane hydration with water vapor at a temperature of 25°C is characterized by a small increase in the repeat distance Δd 0 = 1.0 Å, which is comparable with membrane swelling in the presence of excess water. The kinetics of changes in the repeat distance, connected with an increase of the water layer between bilayers during hydration, and water exchange during the processes of hydration and H-D isotopic substitution, consists of a fast initial and a subsequent slow stage and is well described by exponentials with two characteristic times lying in the range from a few tens of minutes to several hundreds of minutes. During hydration at a temperature of 57°C, the repeat distance increases by Δd 0 = 1.6 Å, after which the membrane irreversibly separates into two phases. One of the phases is formed mainly by long-chain free fatty acids and is characterized by a large decrease in the repeat distance Δd ph = 8.3 Å on dehydration. The investigation of the structure of model membranes in the temperature range 20–72°C indicated that the system with 20% (w) of cholesterol in the range of 63–67°C undergoes a structural phase transition caused by the melting of hydrocarbon chains of lipids. In the system with a smaller content of cholesterol, no phase transition was observed up to a temperature of 72°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Breathnach, T. Goodman, C. Stolinski, and M. Gross, J. Anat. 114, 65 (1973).

    Google Scholar 

  2. K. C. Madison, D. C. Schwartzendruber, P. W. Wertz, and D. T. Downing, J. Invest. Dermatol. 88, 714 (1987).

    Article  Google Scholar 

  3. S. H. White, D. Mirejovsky, and G. I. King, Biochemistry 27, 3725 (1988).

    Article  Google Scholar 

  4. T. J. McIntosh, M. E. Stewart, and D. T. Downing, Biochemistry 35, 3649 (1996).

    Article  Google Scholar 

  5. J. A. Bouwstra, F. E. R. Dubbelaar, G. S. Gooris, and M. Ponec, Acta Dermato-Venereologica 208(Suppl.), 23 (2000).

    Google Scholar 

  6. D. Kessner, A. Ruettinger, M. A. Kiselev, et al., Skin Pharmacol. Physiol. 21(2), 58 (2008).

    Article  Google Scholar 

  7. M. A. Kiselev, N. Y. Ryabova, A. M. Balagurov, et al., Eur. Biophys. J. 34(8), 1030 (2005).

    Article  Google Scholar 

  8. A. Ruettinger, M. A. Kiselev, Th. Hauss, et al., Eur. Biophys. J. 37(6), 759 (2008).

    Article  Google Scholar 

  9. D. Kessner, M. A. Kiselev, Th. Hauss, et al., Eur. Biophys. J. 37(6), 1051 (2008).

    Article  Google Scholar 

  10. D. Kessner, M. Kiselev, S. Dante, et al., Eur. Biophys. J. 37(6), 989 (2008).

    Article  Google Scholar 

  11. M. A. Kiselev, Kristallografiya 52(3), 549 (2007).

    ADS  Google Scholar 

  12. S. L. Krill, K. Knutson, and W. I. Higuchi, Biochim. Biophys. Acta 1112, 281 (1992).

    Article  Google Scholar 

  13. T. Ogiso, H. Ogiso, T. Paku, and M. Iwaki, Biochim. Biophys. Acta 1301, 97 (1996).

    Google Scholar 

  14. B. Ongpipattanakul, M. L. Francoeur, and R. O. Potts, Biochim. Biophys. Acta 1190, 115 (1994).

    Article  Google Scholar 

  15. V. Velkova and M. Lafleur, Chem. Phys. Lipids 117, 63 (2002).

    Article  Google Scholar 

  16. M. Kiselev, A. Ruettinger, N. Ryabova, et al., BENSC experimental reports 2007.

  17. N. Yu. Ryabova, M. A. Kiselev, A. I. Beskrovnyi, and A. M. Balagurov, Fizika Tverdogo Tela (in press).

  18. M. Seul and J. Sammon, Thin Solid Films 185, 287 (1990).

    Article  ADS  Google Scholar 

  19. G. Buldt, H. U. Gally, A. Seelig, and J. Seelig, Nature 271, 182 (1978).

    Article  ADS  Google Scholar 

  20. D. L. Worcester and N. P. Franks, J. Mol. Biol. 100, 359 (1976).

    Article  Google Scholar 

  21. B. P. Schoenborn, Biochim. Biophys. Acta 457, 41 (1976).

    Google Scholar 

  22. G. S. Gooris and J. A. Bouwstra, Biophys. J. 92(8), 2785 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.Yu. Ryabova, M.A. Kiselev, A.M. Balagurov, 2009, published in Biofizika, 2009, Vol. 54, No. 5, pp. 852–862.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabova, N.Y., Kiselev, M.A. & Balagurov, A.M. Transition processes in stratum corneum model lipid membranes with a mixture of free fatty acids. BIOPHYSICS 54, 598–606 (2009). https://doi.org/10.1134/S000635090905008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635090905008X

Key words

Navigation