Skip to main content

Abstract

The intercellular lipid membranes of the SC are an excellent biological example for the relationship between the lipid composition, its physicochemical properties, and biological function. This chapter aims to review the recent investigations of the nanostructure of the stratum corneum lipid membranes, as they are known to play a key role for the barrier function of the skin. The focus of current researches is primarily placed on the investigation of the impact of the different lipid subspecies, in particular the various ceramide subclasses to the structure formation and stability of the lipid layers. As the native lipid matrix of the stratum corneum is a highly complex system, the recent investigations are carried out using simplified, but nevertheless realistic model membranes, applying biophysical and physicochemical techniques. The present chapter assesses the results of these investigations concerning the impact of the exceptionally long-chain ω-acyl ceramides (CER) such as CER[EOS] or CER[EOP]. Furthermore, as current studies have shown the importance of the short-chain ceramides such as CER[AP], these will also be discussed here. In addition, the recently introduced technique of neutron diffraction will be explained as seems to be the most promising method for the investigation of the nanostructure of stratum corneum lipid model membranes with its manifolds and specific advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Amoudi A, Dubochet J, Norlen L (2005) Nanostructure of the epidermal extracellular space as observed by cryo-electron microscopy of vitreous sections of human skin. J Invest Dermatol 124:764–777

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA, Gooris GS, van der Spek JA, Bras W (1991) Structural investigations of human stratum corneum by small-angle x-ray scattering. J Invest Dermatol 97:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M (1996) Phase behavior of isolated skin lipids. J Lipid Res 37:999–1011

    CAS  PubMed  Google Scholar 

  • Bouwstra JA, Gooris GS, Dubbelaar FE, Weerheim AM, Ijzerman AP, Ponec M (1998) Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res 39:186–196

    CAS  PubMed  Google Scholar 

  • Bouwstra J, Pilgram G, Gooris G, Koerten H, Ponec M (2001a) New aspects of the skin barrier organization. Skin Pharmacol Appl Skin Physiol 14(Suppl 1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M (2001b) Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J Lipid Res 42:1759–1770

    CAS  PubMed  Google Scholar 

  • Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M (2002) Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J Invest Dermatol 118:606–617

    Article  CAS  PubMed  Google Scholar 

  • Büldt G, Gally HU, Seelig A, Seelig J, Zaccai G (1978) Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271:184

    Article  Google Scholar 

  • Cantor CR, Schimmel PR (1980) Biophysical chemistry: part II: techniques for the study of biological structure and function. Freeman, San Francisco

    Google Scholar 

  • Charalambopoulou GC, Steriotis TA, Hauss T, Stefanopoulos KL, Stubos AK (2002) A neutron-diffraction study of the effect of hydration on stratum corneum structure. Appl Phys A 74:s1245–s1247

    Article  CAS  Google Scholar 

  • Coderch L, Lopez O, de la Maza A, Parra JL (2003) Ceramides and skin function. Am J Clin Dermatol 4:107–129

    Article  PubMed  Google Scholar 

  • Dachs H (1978) Principles of neutron diffraction. In: Dachs H (ed) Neutron diffraction. Springer, Berlin, p 357

    Chapter  Google Scholar 

  • Dahlen B, Pascher I (1972) Molecular arrangements in sphingolipids - crystal-structure of N-tetracosanoylphytosphingosine. Acta Crystallogr B Struct B 28:2396

    Article  CAS  Google Scholar 

  • Dahlen B, Pascher I (1979) Molecular arrangements in sphingolipids – thermotropic phase-behavior of tetracosanoylphytosphingosine. Chem Phys Lipids 24:119–133

    Article  CAS  Google Scholar 

  • de Jager MW, Gooris GS, Dolbnya IP, Bras W, Ponec M, Bouwstra JA (2003) The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem Phys Lipids 124:123–134

    Article  PubMed  Google Scholar 

  • de Jager M, Gooris G, Ponec M, Bouwstra J (2004) Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J Invest Dermatol 123:911–916

    Article  PubMed  Google Scholar 

  • de Sousa Neto D, Gooris G, Bouwstra J (2011) Effect of the [omega]-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids 164(3):184–95

    Article  PubMed  Google Scholar 

  • Engelbrecht T, Hauss T, Suss K, Vogel A, Roark M, Feller SE, Neubert RHH, Dobner B (2011) Characterisation of a new ceramide EOS species: synthesis and investigation of the thermotropic phase behaviour and influence on the bilayer architecture of stratum corneum lipid model membranes. Soft Matter 7:8998–9011

    Article  CAS  Google Scholar 

  • Engelbrecht TN, Schroeter A, Hauß T, Deme B, Scheidt HA, Huster D, Neubert RHH (2012) The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter 8:2599

    Article  Google Scholar 

  • Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anaesthetics. An x-ray and neutron diffraction study. J Mol Biol 133:469–500

    Article  CAS  PubMed  Google Scholar 

  • Friberg SE, Osborne DW (1987) Interaction of a model epidermal lipid with a vegetable oil adduct. J Dispers Sci Technol 8:249–258

    Article  CAS  Google Scholar 

  • Garson JC, Doucet J, Leveque JL, Tsoucaris G (1991) Oriented structure in human stratum corneum revealed by x-ray diffraction. J Invest Dermatol 96:43–49

    Article  CAS  PubMed  Google Scholar 

  • Groen D, Gooris GS, Bouwstra JA (2010) Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir 26:4168–4175

    Article  CAS  PubMed  Google Scholar 

  • Groen D, Gooris GS, Barlow DJ, Lawrence MJ, van Mechelen JB, Demé B, Bouwstra JA (2011) Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys J 100:1481–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutberlet T, Heinemann U, Steiner M (2001) Protein crystallography with neutrons – status and perspectives. Acta Crystallogr D 57:349–354

    Article  CAS  PubMed  Google Scholar 

  • Harroun TA, Wignall GD, Katsaras J (2006) Neutron scattering for biology. In: Fitter J, Gutberlet T, Katsaras J (eds) Neutron scattering in biology: techniques and applications. Springer, Berlin

    Chapter  Google Scholar 

  • Hatta I, Ohta N, Ban S, Tanaka H, Nakata S (2001) X-Ray diffraction study on ordered, disordered and reconstituted intercellular lipid lamellar structure in stratum corneum. Biophys Chem 89:239–242

    Article  CAS  PubMed  Google Scholar 

  • Hinder A, Schmelzer CEH, Rawlings AV, Neubert RHH (2011) Investigation of the molecular structure of the human stratum corneum ceramides [NP] and [EOS] by mass spectrometry. Skin Pharmacol Physiol 24:127–135

    Article  CAS  PubMed  Google Scholar 

  • Holleran WM, Man MQ, Gao WN, Menon GK, Elias PM, Feingold KR (1991) Sphingolipids are required for mammalian epidermal barrier function. Inhibition of sphingolipid synthesis delays barrier recovery after acute perturbation. J Clin Invest 88:1338–1345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580:5466

    Article  Google Scholar 

  • Kessner D, Kiselev M, Dante S, Hauss T, Lersch P, Wartewig S, Neubert RHH (2008a) Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur Biophys J Biophys 37:989–999

    Article  CAS  Google Scholar 

  • Kessner D, Kiselev MA, Hauss T, Dante S, Wartewig S, Neubert RHH (2008b) Localisation of partially deuterated cholesterol in quaternary SC lipid model membranes: a neutron diffraction study. Eur Biophys J Biophys 37:1051–1057

    Article  CAS  Google Scholar 

  • Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH (2008c) Properties of ceramides and their impact on the stratum corneum structure: part 2: stratum corneum lipid model systems. Skin Pharmacol Physiol 21:58–74

    Article  CAS  PubMed  Google Scholar 

  • Kessner D, Brezesinski G, Funari SS, Dobner B, Neubert RHH (2010) Impact of the long chain [omega]-acylceramides on the stratum corneum lipid nanostructure. Part 1: thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using x-ray powder diffraction and FT-raman spectroscopy. Chem Phys Lipids 163:42–50

    Article  CAS  PubMed  Google Scholar 

  • Kiselev MA (2007) Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum. Crystallogr Rep 52:525–528

    Article  CAS  Google Scholar 

  • Kiselev MA, Ryabova NY, Balagurov AM, Dante S, Hauss T, Zbytovska J, Wartewig S, Neubert RH (2005) New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur Biophys J 34:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Kiselev MA, Zemlyanaya EV, Aswal VK, Neubert RH (2006) What can we learn about the lipid vesicle structure from the small-angle neutron scattering experiment? Eur Biophys J 35:477–493

    Article  CAS  PubMed  Google Scholar 

  • Kuempel D, Swartzendruber DC, Squier CA, Wertz PW (1998) In vitro reconstitution of stratum corneum lipid lamellae. Biochim Biophys Acta 1372:135–140

    Article  CAS  PubMed  Google Scholar 

  • Madison KC, Swartzendruber DC, Wertz PW, Downing DT (1987) Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol 88:714–718

    Article  CAS  PubMed  Google Scholar 

  • Masukawa Y, Narita H, Shimizu E, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T, Takema Y, Kita K (2008) Characterization of overall ceramide species in human stratum corneum. J Lipid Res 49:1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T (2009) Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 50:1708–1719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh TJ (2003) Organization of skin stratum corneum extracellular lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys J 85:1675–1681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Stewart ME, Downing DT (1996) X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry 35:3649–3653

    Article  CAS  PubMed  Google Scholar 

  • Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R (1993) Ceramide composition of the psoriatic scale. Biochim Biophys Acta 1182:147–151

    Article  CAS  PubMed  Google Scholar 

  • Motta S, Monti M, Sesana S, Mellesi L, Ghidoni R, Caputo R (1994) Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch Dermatol 130:452–456

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000a) Lipid bilayer structure. Curr Opin Struct Biol 10:474–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000b) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norlen L (2001) Skin barrier structure and function: the single gel phase model. J Invest Dermatol 117:830–836

    Article  CAS  PubMed  Google Scholar 

  • Pascher I (1976) Molecular arrangements in sphingolipids conformation and hydrogen-bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451

    Article  CAS  PubMed  Google Scholar 

  • Pascher I, Sundell S (1992) Molecular arrangements in sphingolipids: crystal structure of the ceramide N-(2d, 3d-dihydroxyoctadecanoyl)-phytosphingosine. Chem Phys Lipids 62:79–86

    Article  CAS  Google Scholar 

  • Pfeiffer S, Vielhaber G, Vietzke JP, Wittern KP, Hintze U, Wepf R (2000) High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. J Invest Dermatol 114:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Raith K, Farwanah H, Wartewig S, Neubert RHH (2004) Progress in the analysis of stratum corneum ceramides. Eur J Lipid Sci Technol 106:561–571

    Article  CAS  Google Scholar 

  • Raudenkolb S (2002) Untersuchungen zur strukturellen und physikochemischen charakterisierung von stratum corneum lipiden und deren mischsystemen Institute of Pharmacy, vol PhD. Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)

    Google Scholar 

  • Raudenkolb S, Hubner W, Rettig W, Wartewig S, Neubert RH (2003a) Polymorphism of ceramide 3. Part 1: an investigation focused on the head group of N-octadecanoylphytosphingosine. Chem Phys Lipids 123:9–17

    Article  CAS  PubMed  Google Scholar 

  • Raudenkolb S, Wartewig S, Neubert RH (2003b) Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d(35) derivative. Chem Phys Lipids 124:89–101

    Article  CAS  PubMed  Google Scholar 

  • Raudenkolb S, Wartewig S, Neubert RH (2005) Polymorphism of ceramide 6: a vibrational spectroscopic and x-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. Chem Phys Lipids 133:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ruettinger A, Kiselev MA, Hauss T, Dante S, Balagurov AM, Neubert RH (2008) Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study. Eur Biophys J 37:759–771

    Article  CAS  PubMed  Google Scholar 

  • Ryabova N, Kiselev M, Balagurov A (2009) Transition processes in stratum corneum model lipid membranes with a mixture of free fatty acids. Biophysics 54:598–606

    Article  Google Scholar 

  • Ryabova NY, Kiselev MA, Dante S, Hauss T, Balagurov AM (2010) Investigation of stratum corneum lipid model membranes with free fatty acid composition by neutron diffraction. Eur Biophys J 39:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Schroeter A, Engelbrecht T, Hauß T, Neubert RHH (2008) Role of ceramide [AP] and ceramide [EOS] in the structural assembly of stratum corneum model membrane. BENSC experimental reports. Helmholtz Zentrum Berlin für Materialien und Energie, Berlin

    Google Scholar 

  • Schroeter A, Kiselev MA, Hauß T, Dante S, Neubert RHH (2009) Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. BBA Biomembr 1788:2203

    Article  Google Scholar 

  • Tomita M, Hasegawa T, Tsukihara T, Miyajima S, Nagao M, Sato M (1999) Two concentric protein shell structure with spikes of silkworm Bombyx mori cytoplasmic polyhedrosis virus revealed by small-angle neutron scattering using the contrast variation method. J Biochem (Tokyo) 125:916–922

    Article  CAS  Google Scholar 

  • Wartewig S, Neubert RHH (2007) Properties of ceramides and their impact on the stratum corneum structure: a review. Part 1: ceramides. Skin Pharmacol Physiol 20:220–229

    Article  CAS  PubMed  Google Scholar 

  • Wegener M, Neubert R, Rettig W, Wartewig S (1997) Structure of stratum corneum lipids characterized by FT-raman spectroscopy and DSC. III. Mixtures of ceramides and cholesterol. Chem Phys Lipids 88:73–82

    Article  CAS  PubMed  Google Scholar 

  • Wertz PW, Downing DT (1983) Ceramides of pig epidermis: structure determination. J Lipid Res 24:759–765

    CAS  PubMed  Google Scholar 

  • Wertz PW, Swartzendruber DC, Madison KC, Downing DT (1987) Composition and morphology of epidermal cyst lipids. J Invest Dermatol 89:419–425

    Article  CAS  PubMed  Google Scholar 

  • White SH, Mirejovsky D, King GI (1988) Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An x-ray diffraction study. Biochemistry 27:3725–3732

    Article  CAS  PubMed  Google Scholar 

  • Wiener MC, White SH (1991) Fluid bilayer structure determination by the combined use of x-ray and neutron-diffraction. 1. Fluid bilayer models and the limits of resolution. Biophys J 59:162–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Worcester DL (1976) Neutron diffraction studies of biological membranes and membrane components. Brookhaven Symp Biol 27:III37–III57

    Google Scholar 

  • Yamamoto A, Serizawa S, Ito M, Sato Y (1991) Stratum corneum lipid abnormalities in atopic dermatitis. Arch Dermatol Res 283:219–223

    Article  CAS  PubMed  Google Scholar 

  • Zbytovska J, Vavrova K, Kiselev MA, Lessieur P, Wartewig S, Neubert RHH (2009) The effects of transdermal permeation enhancers on thermotropic phase behaviour of a stratum corneum lipid model. Colloids Surf A 351:30–37

    Article  CAS  Google Scholar 

  • Zemlyanaya EV, Kiselev MA, Neubert R, Kohlbrecher J, Aksenov VL (2008) Investigation of the structure and properties of model membranes of the stratum corneum by small-angle neutron scattering. J Surf Invest X-Ray 2:884–889

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Schroeter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schroeter, A., Eichner, A., Mueller, J., Neubert, R.H.H. (2015). The Importance of Stratum Corneum Lipid Organization for Proper Barrier Function. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45013-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45013-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45012-3

  • Online ISBN: 978-3-662-45013-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics