Skip to main content
Log in

Diffusion and diffusion-osmosis models of the transfer of charged molecules across biological barriers

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Mathematical models of the transfer of large enough charged molecules (macroions) have been constructed on the basis of the classical equations of electromigration diffusion (Helmholtz-Smoluchowski, Goldman, and Goldman-Hodgkin-Katz). It is shown that ion transfer in placental barriers (mimicking lipid-protein membrane barriers) and in muscle barriers proceeds by different mechanisms. In placental barriers, the electromigration diffusion takes place through lipid-protein channels formed by conformational alteration of phospholipid and protein molecules, with diffusion coefficients D = (2.6–3.6) × 10−8 cm2/s. The transfer in muscle barriers is due to migration via charged interfibrillar channels with negative diffusion activation energy (explained by changes in the structure of muscle fibers and expenditures of thermal energy for the displacement of Cl from channel walls), and D = (6.0–10.0) × 10−6 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEL:

double electric layer

EMD:

electromigration diffusion

HS:

Helmholtz-Smoluchowski

GHK:

Goldman-Hodgkin-Katz

References

  1. Yu. M. Raigorodskii, Yu. V. Seryanov, and A. V. Lepilin, Phoretic Properties of Physical Fields and Devices for Optimal Physiotherapy in Usology, Stomatology, and Ophthalmology (Saratov Univ., 2000) [in Russian].

  2. A. I. Varakin and V. N. Lyasnikov, Izv. VUZov, Ser. Khimiya Khim. Tekhnol. 46(8), 130 (2003).

    Google Scholar 

  3. A. I. Varakin, Izv. VUZov, Ser. Khimiya Khim. Tekhnol. 47(1), 72 (2004).

    Google Scholar 

  4. A. I. Varakin and Yu. V. Seryanov, Izv. VUZov, Ser. Khimiya Khim. Tekhnol. 47(1), 150 (2004).

    Google Scholar 

  5. A. I. Varakin, V. V. Mazur, and Yu. V. Seryanov, Izv. VUZov, Ser. Khimiya Khim. Tekhnol. 47(1), 77 (2004).

    Google Scholar 

  6. V. V. Mazur, A. I. Varakin, and Yu. V. Seryanov, Zh. Fiz. Khimii 80(2), 1 (2006).

    Google Scholar 

  7. V. V. Mazur, A. I. Varakin, and Yu. V. Seryanov, Med. Tekhnika 39(1), 8 (2006).

    Google Scholar 

  8. B. Katz, Nerve, Muscle, Synapse (Mir, Moscow, 1968).

    Google Scholar 

  9. V. S. Ulashchik, Theory and Practice of Drug Electrophoresis (Belarus, Minsk, 1976) [in Russian].

    Google Scholar 

  10. Yu. A. Ermakov, Ross. Khim. Zh. 49(5), 114 (2005).

    Google Scholar 

  11. V. S. Markin and Yu. A. Chizmadzhev, Induced Ion Transport (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  12. B. Sakman and E. Neer, Registration of Single Channels (Mir, Moscow, 1987).

    Google Scholar 

  13. L. W. Johnson and C. H. Smith, Biochim. Biophys. Acta 815, 44 (1985).

    Article  Google Scholar 

  14. N. C. Smith and M. G. Brush, Medical Biol. 56, 272 (1978).

    Google Scholar 

  15. J. S. Fidley and W. H. Evans, Biological Membranes (Mir, Moscow, 1990).

    Google Scholar 

  16. Chemical Encyclopedia (Moscow, 1992) [in Russian].

  17. V. G. Ivkov and G. N. Berestovskii, Dynamic Structure of Lipid Bilayer (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  18. N. I. Nikolaev, Diffusion in Membranes (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  19. E. Sim, Membrane Biochemistry (Mir, Moscow, 1985).

    Google Scholar 

  20. N. Birks and G. Mayer, Introduction to High-Temperature Metal Oxidation (Khimiya, Moscow, 1978).

    Google Scholar 

  21. C. Fetter, Electrochemical Kinetics (Khimiya, Moscow, 1967).

    Google Scholar 

  22. C. D. Nenicescu, Organic Chemistry (In. Lit., Moscow, 1962).

    Google Scholar 

  23. N. B. Gusev, Soros. Obraz. Zh. 6(8), 24 (2000).

    MathSciNet  Google Scholar 

  24. L. E. Bakeeva and Yu. S. Chentsov, Advances of Science. General Problems of Biology (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  25. M. M. Shemyakin, Chemistry of Antibiotics (Nauka, Moscow, 1961), Vol. 1 [in Russian].

    Google Scholar 

  26. G. F. Elliott, J. Mechanochem. Cell Motil., 2, 83 (1973).

    Google Scholar 

  27. I. Koryta, I. Dvorzhak, and V. Bogachkova, Electrochemistry (Mir, Moscow, 1977) [in Russian].

    Google Scholar 

  28. L. Edelman, Physiol. Chem. Phys. and Med. 15, 337 (1983).

    Google Scholar 

  29. L. Edelman, Physiol. Chem. Phys. and Med. 16, 499 (1984).

    Google Scholar 

  30. G. N. Ling, A Revolution in the Physiology of the Living Cell (Krieger Publishing Company Malabar, Florida, 1992).

    Google Scholar 

  31. G. N. Ling, A Physical Theory of the Living State: The Association-Induction Hypothesis (Blaisdell, Waltham, Mass., 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.I. Varakin, V.V. Mazur, N.V. Arkhipova, Yu.V. Seryanov, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 471–481.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varakin, A.I., Mazur, V.V., Arkhipova, N.V. et al. Diffusion and diffusion-osmosis models of the transfer of charged molecules across biological barriers. BIOPHYSICS 54, 327–335 (2009). https://doi.org/10.1134/S0006350909030129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030129

Key words

Navigation