Skip to main content
Log in

A comparative analysis of the contracture responses induced by acetylcholine and choline in the twitch and tonic fibers of frog skeletal muscles

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative analysis of the contractile responses induced by acetylcholine and replacement of the external Na+ ions with choline ions in the isolated twitch and tonic fibers of frog skeletal muscles was performed. The effects of extracellular Ca2+ concentration and several pharmacological agents modulating the activity of various systems maintaining Ca2+ level in the myoplasm (dantrolene, cresol, d-tubocurarine, and tetrodotoxin) were studied. It has been found that a voltage-dependent Ca2+ release from the sarcoplasmic reticulum depot is the main mechanism inducing the acetylcholine contracture in the fibers of both types. However, the twitch and tonic fibers differ in the properties of the α-isoform and(or) the ratio of α- to β-isoforms of ryanodine-sensitive channels. In the fibers of both types, the replacement of over 25% of Na+ ions with choline induces long-term contracture responses, which are also mediated by activation of acetylcholine receptors. It is assumed that an additional mechanism—accumulation of choline ions in the myoplasm and their direct action on the ryanodine-sensitive channels—is involved in the development of such contractile responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SR:

sarcoplasmic reticulum

RyRs:

ryanodine-sensitive receptors/channels

DICR:

depolarization-induced Ca2+ release from SR

CICR:

Ca-induced Ca2+ release from SR

SC:

single contraction

ACh:

acetylcholine chloride

AChC:

acetylcholine contracture

ChC:

choline-induced contracture

nAChR:

nicotinic acetylcholine receptor

References

  1. W. F. Gilly and N. S. Hui, J. Physiol. 301, 137 (1980).

    Google Scholar 

  2. G. A. Nasledov, The Tonic Muscle System of Vertebrates (Nauka, Leningrad, 1981).

    Google Scholar 

  3. B. O’Connell, R. Blazev, and G. M. Stephenson, Am. J. Physiol. Cell Physiol. 290, C515 (2006).

    Article  Google Scholar 

  4. D. Zacharova, M. Hencek, T. L. Radzukewicz, et al., Gen. Physiol. Biophys. 4(6), 641 (1985).

    Google Scholar 

  5. M. Huerta, J. Muniz, and E. Stefani, J. Physiol. 376, 219 (1986).

    Google Scholar 

  6. M. Huerta, J. Muniz, C. Vasquez, et al., Jap. J. Physiol. 41, 933 (1991).

    Article  Google Scholar 

  7. Y. Ogawa, T. Murayama, and N. Kurebayashi, Mol. Cell Biochem. 190, 191 (1999).

    Article  Google Scholar 

  8. Y. Ogawa, T. Murayama, and N. Kurebayashi, Frontiers in Bioscience 7, 1184 (2002).

    Article  Google Scholar 

  9. E. Felder and C. Fanzine-Armstrong, Proc. Natl. Acad. Sci. USA 99(5), 1695 (2002).

    Article  ADS  Google Scholar 

  10. G. A. Nasledov, I. E. Katina, and M. A. Kobzeva, Ross. Fiziol. Zh. 90(3), 327 (2004).

    Google Scholar 

  11. N. Franzini-Armstrong and F. Protasi, Physiol. Rev. 77(3), 699 (1997).

    Google Scholar 

  12. P. Szentesi, C. Collet, S. Sarkozi, et al., J. Gen. Physiol. 118(4), 355 (2001).

    Article  Google Scholar 

  13. F. Zhao, P. Li, S. R. Chen, et al., J. Biol. Chem. 276(17), 13810 (2001).

    Google Scholar 

  14. A. A. Kabbara and D. G. Allen, Cell Calcium 25(3), 227 (1999).

    Article  Google Scholar 

  15. G. G. Du, H. Oyamada, V. K. Khanna, and D. H. MacLennan, Biochem J. 15(360), 97 (2001).

    Article  Google Scholar 

  16. I. E. Katina and G. A. Nasledov, Biofizika, 51(5), 898 (2006).

    Google Scholar 

  17. A. Hoya and R. A. Venosa, J. Physiol. 486, 615 (1995).

    Google Scholar 

  18. I. P. Blaustein and W. J. Lederer, Physiol Rev. 79(3), 763 (1999).

    Google Scholar 

  19. F. Cifuentes, J. Vergara, and C. Hidalgo, Am. J. Physiol. Cell Physiol. 279(1), C89 (2000).

    Google Scholar 

  20. W. Meme and C. Leoty, Pflugers Arch. 438(6), 851 (1999).

    Article  Google Scholar 

  21. G. Shaechtelin, Pflugers Arch. Gesamte Physiol. Menschen Tiere 273, 164 (1961).

    Article  Google Scholar 

  22. H. Kawata and N. Fujishiro, Jpn. J. Physiol. 38(1), 33 (1988).

    Article  Google Scholar 

  23. N. F. Skorobovichuk and N. A. Chizhova, Zh. Evol. Biokhim. Fiziol. 19(3), 262 (1983).

    Google Scholar 

  24. R. Zucchi and S. Ronca-Testini, Pharmacol. Rev. 49(1), 1 (1997).

    Google Scholar 

  25. M. Borgers, F. Thone, A. Verheyen, and N. E. Ter Keurs, Histochem. J. 16, 295 (1984).

    Article  Google Scholar 

  26. H. Tsuneki, R. Salas, and J. A. Dani, J. Physiol. 547(1), 169 (2003).

    Article  Google Scholar 

  27. G. G. Du, N. C. Ashley, and T. J. Lea, Pflugers Arch. 436(3), 365 (1998).

    Article  Google Scholar 

  28. W. Hasselbach and A. Migala, J. Membrane Biol. 164, 215 (1998).

    Article  Google Scholar 

  29. G. Meissner, E. Rios, A. Tripathy, and D. Pasek, J. Biol. Chem. 272(3), 1628 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Katina.

Additional information

Original Russian Text © I.E. Katina, G.A. Nasledov, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 1078–1086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katina, I.E., Nasledov, G.A. A comparative analysis of the contracture responses induced by acetylcholine and choline in the twitch and tonic fibers of frog skeletal muscles. BIOPHYSICS 53, 608–614 (2008). https://doi.org/10.1134/S0006350908060262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060262

Key words

Navigation