Skip to main content
Log in

Decrease in the electrogenic Contribution of Na,K-ATPase and the resting membrane potential as a possible mechanism of Ca2+ accumulation in rat soleus muscle in a short-term gravity unloading

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The resting membrane potential and electrogenic contribution of α1- and α2-isoforms of Na+/K+-ATPase in the rat soleus muscle at early stages of gravity unloading were analyzed. The role of L-type calcium channels in accumulation of calcium ions in the myoplasm under these conditions was estimated. After 3-day antiorthostatic suspension, the resting membrane potential of the muscle fibers decreased from −71.0 ± 0.5 to −66.8 ± 0.7 mV, the muscle excitability reduced, and a trend of muscle fatigue acceleration appeared. The electrogenic contribution of ouabain-sensitive α2-isoform of Na+/K+-ATPase, determined as the depolarization caused by 1μM ouabain, decreased after suspension from 6.2 ± 0.6 to 0.5 ± 0.8 mV. The contribution of ouabain-resistant α1-isoform of Na+/K+-ATPase, determined as an additional depolarization after addition of 500 μM ouabain, decreased from 4.6 ± 0.6 to 2.6 ± 0.6 mV. The intensity of Fluo-4AM fluorescence in individual muscle fibers increased after suspension more than fourfold, which suggests an elevated calcium concentration in the myoplasm. A local delivery of nifedipine, a blocker of the L-type calcium channels, to the muscle removed this effect. The existence of a selective mechanism suppressing the electrogenic contribution of Na+/K+-ATPase α2-isoform, which is the main cause of the muscle fiber membrane depolarization after 3-day suspension, is postulated. The depolarization can activate part of potential-sensitive L-type Ca2+ channels, causing the accumulation of calcium ions in the muscle fiber myoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Grigor’ev, I. B. Kozlovskaya, and B. S. Shenkman, Ross. Fiziol. Zh. 90(5), 508 (2004).

    Google Scholar 

  2. B. S. Shenkman and I. B. Kozlovskaya, in Man in Space Flight (Nauka, Kosm. Biol. Med., Moscow, 1997), Vol. 3, pp. 401–420 [in Russian].

    Google Scholar 

  3. R. H. Fitts, D. R. Riley, and J. J. Widrick, J. Exp. Biol. 204, 3201 (2001).

    Google Scholar 

  4. S. Pierno, J.-F. Desaphy, A. Liantonio, et al., Brain 125, 1510 (2002).

    Article  Google Scholar 

  5. O. V. Tyapkina, E. M. Volkov, L. F. Nurullin, et al., Ross. Fiziol. Zh. (in press).

  6. O. D. Lopina, Biol. Membrany 16(6), 584 (1999).

    Google Scholar 

  7. A. Mobasheri, J. Avila, I. Cozar-Castellano, et al., Biosci. Reports 20(2), 51 (2000).

    Article  Google Scholar 

  8. T. Clausen, Acta Physiol. 192, 339 (2008).

    Article  Google Scholar 

  9. C. P. Ingalls, G. L. Warren, and R. B. Armstrong, J. Appl. Physiol. 87(1), 386 (1999).

    Google Scholar 

  10. B. S. Shenkman, K. S. Litvinova, T. L. Nemirovskaya, et al., J. Gravit. Physiol. 11(2), 111 (2004).

    Google Scholar 

  11. K. S. Litvinova, I. M. Vikhlyantsev, Z. A. Podlubnaya, and B. S. Shenkman, J. Gravit. Physiol. 12(1), 159 (2005).

    Google Scholar 

  12. H. Z. Feng and Z. B. Yu, Space Med. Med. Eng. (Beijing) 18(2), 89 (2005).

    MathSciNet  Google Scholar 

  13. A. M. Mukhina, E. G. Altaeva, T. L. Nemirovskaya, and B. S. Shenkman, Neurosci. Behav. Physiol. 38(2), 181 (2008).

    Article  Google Scholar 

  14. E. Morey-Holton, R. K. Globus, A. Kaplansky, and G. Durnova, Adv. Space Biol. Med. 10, 7 (2005).

    Article  Google Scholar 

  15. I. I. Krivoi, T. M. Drabkina, V. V. Kravtsova, et al., Pflugers Arch. Eur. J. Physiol. 452(6), 756 (2006).

    Article  Google Scholar 

  16. A. L. Connold, L. Greensmith, F. Tyc, and G. Vrbova, Brain Res. Protocols 1, 79 (1997).

    Article  Google Scholar 

  17. E. V. Ponomareva, E. V. Kachaeva, E. G. Altaeva, et al., Biofozika (in press).

  18. I. I. Krivoi, T. M. Drabkina, A. N. Vasil’ev, and V. V. Kravtsova, Biol. Membrany 23(2), 139 (2006).

    Google Scholar 

  19. J.-F. Desaphy, S. Pierno, N. Leoty, Jr., et al., Brain 124, 1100 (2001).

    Article  Google Scholar 

  20. L. Lavoie, R. Levenson, P. Martin-Vasallo, and A. Klip, Biochem. 36, 7726 (1997).

    Article  Google Scholar 

  21. C. B. Thompson, C. Choi, J. H. Youn, and A. A. McDonough, Am. J. Physiol. Cell. Physiol. 276, C1411 (1999).

    Google Scholar 

  22. M. Kristensen, M. K. Rasmussen, and C. Juel, Pflugers Arch. Eur. J. Physiol. 456, 979 (2008).

    Article  Google Scholar 

  23. S. Kandarian, S. O’Brien, K. Thomas, et al., J. Appl. Physiol. 72(6), 2510 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.I. Krivoi, V.V. Kravtsova, E.G. Altaeva, I.V. Kubasov, A.V. Prokof’ev, T.M. Drabkina, E.E. Nikol’sky, B.S. Shenkman, 2008, published in Biofizika, 2008, Vol. 53, No. 6, pp. 1051–1057.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivoi, I.I., Kravtsova, V.V., Altaeva, E.G. et al. Decrease in the electrogenic Contribution of Na,K-ATPase and the resting membrane potential as a possible mechanism of Ca2+ accumulation in rat soleus muscle in a short-term gravity unloading. BIOPHYSICS 53, 586–591 (2008). https://doi.org/10.1134/S0006350908060225

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350908060225

Key words

Navigation