Skip to main content
Log in

Population dynamics in modeling tumor growth

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A new approach based on local interaction between cancer and tissue cells is applied to the problem of the onset and growth of solid tumors in homogeneous tissues and effects associated with dramatic changes in tumor growth after crossing the boundary between different tissues. The characteristic sizes and growth rates of spherical tumors, the points of the beginning and the end of spherical growth, and further development of complex structures from the spherical ones (rough interface between the tumor and the host tissue, elongate outgrowths, dendritic structures, and metastases) are inferred assuming that the reproduction rate of a population of cancer cells is a nonmonotonous function of their local concentration and thus of the local curvature of the tumor surface. The growth behavior changes dramatically when the tumor crosses a boundary between two tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adam, Math. Biosci. 81, 229 (1986).

    Article  MATH  Google Scholar 

  2. J. Adam, Math. Biosci. 86, 183 (1987).

    Article  MATH  Google Scholar 

  3. J. Adam, Math. Biosci. 86, 213 (1987).

    Article  MATH  Google Scholar 

  4. S. Michelson and J. Leith, Math. Biosci. 91, 119 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Dewanji, S. Moolgavkar, and E. Luebeck, Math. Biosci. 104, 97 (1991).

    Article  MATH  Google Scholar 

  6. C. Calderon and T. Kwembe, Math. Biosci. 103, 97 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Kendal, Math. Biosci. 108, 81 (1992).

    Article  Google Scholar 

  8. V. A. Kuznetsov, Dynamics of Immune Processes in Tumor Growth (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  9. A. Kopp-Shneider and C. Portier, Math. Biosci. 120, 211 (1994).

    Article  Google Scholar 

  10. N. Bellomo and G. Formi, Mathl. Comput. Modelling 20(1), 107 (1994).

    Article  MATH  Google Scholar 

  11. Ž. Bajzer, M. Marušić and S. Vuk-Pavlović, Mathl. Comput. Modelling 23(6), 31 (1996).

    Article  MATH  Google Scholar 

  12. R. Wasserman, R. Acharya, C. Sibata, and K. Shin. Math. Biosci., 13, 111 (1996).

    Article  Google Scholar 

  13. M. Orme and M. Chaplain, Mathl. Comput. Modelling 23(10), 43 (1996).

    Article  MATH  Google Scholar 

  14. A. Brú, S. Albertos, J. L. Subiza, et al., Biophys. J. 85, 2948 (2003).

    Article  ADS  Google Scholar 

  15. M. Abercombie, Nature (London) 281, 259 (1979).

    Article  ADS  Google Scholar 

  16. A. S. Gleiberman, E. I. Kudrjavtseva, Yu. Yu. Sharovskaya, and G. I. Abelev, Mol. Biol. Med. 6, 95 (1989).

    Google Scholar 

  17. W. Jongen, D. Fitzgerald, M. Asamoto, et al., J. Cell Biol. 114(3), 545 (1991).

    Article  Google Scholar 

  18. I. P. Shabalkin, Tsitologiya 40, 106 (1998).

    Google Scholar 

  19. I. P. Shabalkin, A. S. Yagubov, S. G. Mamontov, and P. I. Shabalkin, Dokl. RAN 365, 561 (1999).

    Google Scholar 

  20. Yu. Yu. Sharovskaya and L. M. Chailakhyan, Dokl. RAN 366, 128 (1999).

    Google Scholar 

  21. Yu. Yu. Sharovskaya, S. M. Gainulina, A. A. Yakusheva, et al., Dokl. RAN 377, 709 (2001).

    Google Scholar 

  22. I. P. Shabalkin, A. S. Yagubov, P. I. Shabalkin, and V. I. Minaev, Ross. Onkol. Zh. No. 2, 26 (2002).

  23. A. D. Bazykin, F. S. Berezovskaya, A. S. Isaev, and R. G. Khlebopros, J. Theor. Biol. 186(3), 267 (1997).

    Article  Google Scholar 

  24. R. Khlebopros, V. Slepkov, and V. Sukhovolsky, in Proceedings of the 8th World Multi-Conference on Systemics, Cybernetics and Informatics, July 18–21, 2004, Orlando, Florida, USA, SCI 2004/ISAS 2004. 43 (2004). Vol. XVI.

  25. V. Nikos Manlzaris Steve Webb, Hans G. Othmer, J. Math. Biol. 49(2), 111 (2004).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Slepkov, V.G. Sukhovolsky, R.G. Khlebopros, 2007, published in Biofizika, 2007, Vol. 52, No. 4, pp. 733–740.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slepkov, V.A., Sukhovolsky, V.G. & Khlebopros, R.G. Population dynamics in modeling tumor growth. BIOPHYSICS 52, 426–431 (2007). https://doi.org/10.1134/S0006350907040136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907040136

Key words

Navigation