Skip to main content
Log in

Modeling tumor growth with peridynamics

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Computational models of tumors have the potential to connect observations made on the cellular and the tissue scales. With cellular scale models, each cell can be treated as a discrete entity, while tissue scale models typically represent tumors as a continuum. Though the discrete approach often enables a more mechanistic and biologically driven description of cellular behavior, it is often computationally intractable on the tissue scale. Here, we adapt peridynamics, a theoretical and computational approach designed to unify the mechanics of discrete and continuous media, for the growth of biological materials. The result is a computational model for tumor growth that can represent either individual cells or the tissue as a whole. We take advantage of the flexibility provided by the peridynamic framework to implement a cell division mechanism, motivated by the fact that cell division is the mechanism driving tumor growth. This paper provides a general framework for implementing a new tumor growth modeling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sci 40:1297–1316

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosi D, Preziosi L (2008) Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech Model Mechanobiol 8(5):397–413

    Article  Google Scholar 

  • Ambrosi D, Ateshian G, Arruda E, Cowin S, Dumais J, Goriely A, Holzapfel G, Humphrey J, Kemkemer R, Kuhl E et al (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59(4):863–883

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosi D, Preziosi L, Vitale G (2012) The interplay between stress and growth in solid tumors. Mech Res Commun 42:87–91

    Article  Google Scholar 

  • Araujo RP, McElwain DLS (2004) A linear-elastic model of anisotropic tumour growth. Eur J Appl Math 15(3):365–384

    Article  MathSciNet  MATH  Google Scholar 

  • Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593–646

    Article  MathSciNet  MATH  Google Scholar 

  • Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. J Multiscale Comput Eng 9(6):635–659

    Article  Google Scholar 

  • Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 77(6):852–877

    Article  MATH  Google Scholar 

  • Byrne H (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20(4):341–366

    Article  MATH  Google Scholar 

  • Byrne H, Drasdo D (2008) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687

    MathSciNet  MATH  Google Scholar 

  • Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346

    Article  Google Scholar 

  • Cristini V (2005) Morphologic instability and cancer invasion. Clin Cancer Res 11(19):6772–6779

    Article  Google Scholar 

  • Cristini V, Lowengrub J, Nie Q (2002) Nonlinear simulation of tumor growth. J Math Biol 46:191–224

    Article  MathSciNet  MATH  Google Scholar 

  • Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13:127–155

    Article  Google Scholar 

  • Deng Q, Chen Y, Lee J (2008) An investigation of the microscopic mechanism of fracture and healing processes in cortical bone. Int J Damage Mech 18(5):491–502

    Article  Google Scholar 

  • Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol 2(3):133–147

    Article  Google Scholar 

  • Drasdo D, Höhme S, Block M (2007) On the role of physics in the growth and pattern formation of multi-cellular systems: What can we learn from individual-cell based models? J Stat Phys 128(1–2):287–345

    Article  MathSciNet  MATH  Google Scholar 

  • Foster JT, Silling SA, Chen WW (2009) Viscoplasticity using peridynamics. Int J Numer Methods Eng 81:1242–1258

    MATH  Google Scholar 

  • Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer EL, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37:S59–S70

    Article  Google Scholar 

  • Gatenby R, Gawlinski E (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56(24):5745–5753

    Google Scholar 

  • Gillies TE, Cabernard C (2011) Cell division orientation in animals. Curr Biol 21(15):R599–R609

    Article  Google Scholar 

  • Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15:778–783

    Article  Google Scholar 

  • Kilic B, Madenci E (2010a) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mech 53(3):194–204

    Article  Google Scholar 

  • Kilic B, Madenci E (2010b) Peridynamic theory for thermomechanical analysis. IEEE Trans Adv Packag 33(1):97–105

    Article  Google Scholar 

  • Kim Y, Stolarska MA, Othmer HG (2007) A hybrid model for tumor spheroid growth in vitro I: theoretical development and early results. Math Models Methods Appl Sci 17:1773–1798

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhl E, Maas R, Himpel G, Menzel A (2006) Computational modeling of arterial wall growth. Biomech Model Mechanobiol 6(5):321–331

    Article  Google Scholar 

  • Lejeune E, Javili A, Linder C (2016a) An algorithmic approach to multi-layer wrinkling. Extreme Mech Lett 7:10–17

    Article  Google Scholar 

  • Lejeune E, Javili A, Linder C (2016b) Understanding geometric instabilities in thin films via a multi-layer model. Soft Matter 12:806–816

    Article  Google Scholar 

  • Lejeune E, Javili A, Weickenmeier JE, Kuhl LC (2016c) Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum. Soft Matter 12:5613–5620

    Article  Google Scholar 

  • Linder C, Tkachuk M, Miehe C (2011) A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J Mech Phys Solids 59(10):2134–2156

    Article  MathSciNet  MATH  Google Scholar 

  • Littlewood D (2015) Roadmap for peridynamic software implementation. SAND Report, Aandia National Laboratories, Albuquerque, NM and Livermore, CA

  • Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R91

    Article  MathSciNet  MATH  Google Scholar 

  • Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, NewYork

    Book  MATH  Google Scholar 

  • Mitchell JA (2011) A nonlocal, ordinary, state-based plasticity model for peridynamics. SAND report 3166

  • Norton KA, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T (2010) A 2d mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol 263(4):393–406

    Article  Google Scholar 

  • Poste G, Fidler I (1980) The pathogenesis of cancer metastasis. Nature 283(5743):139–146

    Article  Google Scholar 

  • Preziosi L, Tosin A (2008) Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J Math Biol 58(4–5):625–656

    MathSciNet  MATH  Google Scholar 

  • Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476

    Article  MathSciNet  Google Scholar 

  • Sandersius SA, Newman TJ (2008) Modeling cell rheology with the subcellular element model. Phys Biol 5(1):015002

    Article  Google Scholar 

  • Silling S, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  • Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  • Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  • Stolarska MA, Kim Y, Othmer HG (2009) Multi-scale models of cell and tissue dynamics. Philos Trans R Soc A Math Phys Eng Sci 367(1902):3525–3553

    Article  MathSciNet  MATH  Google Scholar 

  • Timoshenko S (1925) Analysis of bi-metal thermostats. JOSA 11(3):233–255

    Article  Google Scholar 

  • Wang Z, Butner J, Kerketta R, Cristini V, Deisboeck TS (2015) Simulating cancer growth with multiscale agent-based modeling. Semin Cancer Biol 30:70–78

  • Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Linder.

Ethics declarations

Funding

This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lejeune, E., Linder, C. Modeling tumor growth with peridynamics. Biomech Model Mechanobiol 16, 1141–1157 (2017). https://doi.org/10.1007/s10237-017-0876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0876-8

Keywords

Mathematics Subject Classification

Navigation