Skip to main content
Log in

Influence of light-induced changes in stromal and lumenal pH on electron transport kinetics in chloroplasts: Mathematical modeling

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A mathematical model of electron and proton transport in higher plant chloroplasts is built with allowance for light-induced pH changes in the stroma and the thylakoid lumen. The model considers the key steps of electron transport from photosystem II to NADP+, the terminal acceptor of PS I, ATP synthesis from ADP and inorganic phosphate coupled with transmembrane proton transport, consumption of NADPH and ATP in the Calvin cycle. Account of the influence of lumenal and stromal pH changes on the rate of electron transport at the plastoquinone segment of the chain and on the acceptor side of PS I allows description of the particular features of the complex kinetics of electron transport in intact chloroplasts. Calculations show that accelerated efflux of electrons at the acceptor part of PS I, resulting from activation of the Calvin cycle reaction upon light-induced stromal alkalization, may be one of the causes of the multiphasic kinetics of the redox conversions of the PS I primary donor P700, which is characteristic of dark-adapted cyanobacteria, algae, and intact higher plant chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Rubin and V. P. Shinkarev, Electron Transport in Biophysical Systems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. A. K. Kukushkin and A. N. Tikhonov, Lectures on Biophysics of Higher Plant Photosynthesis (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  3. V. A. Karavaev and A. K. Kukushkin, Biofizika 38, 958 (1993).

    Google Scholar 

  4. A. Yu. Dubinskii and A. N. Tikhonov, Biofizika 39, 652 (1994).

    Google Scholar 

  5. A. Yu. Dubinskii and A. N. Tikhonov, Biofizika 40, 365 (1995).

    Google Scholar 

  6. A. Yu. Dubinskii and A. N. Tikhonov, Biofizika 42, 644 (1997).

    Google Scholar 

  7. G. E. Kirchhoff, S. Horstmann, and E. Weis, Biochim. Biophys. Acta 1459, 148 (2000).

    Article  Google Scholar 

  8. S. Berry and B. Rumberg, Bioelectrochemistry 53, 35 (2000).

    Article  Google Scholar 

  9. G. V. Lebedeva, N. E. Belyaeva, O. V. Demin, et al., Biofizika 47, 1044 (2002).

    Google Scholar 

  10. A. V. Vershubskii, V. I. Priklonskii, and A. N. Tikhonov, Biofizika 46, 471 (2001).

    Google Scholar 

  11. A. V. Vershubskii, V. I. Priklonskii, and A. N. Tikhonov, Biol. Membr. 20, 184 (2003).

    Google Scholar 

  12. A. V. Vershubskii, V. I. Priklonskii, and A. N. Tikhonov, Biofizika 49, 57 (2004).

    Google Scholar 

  13. A. V. Vershubskii, V. I. Priklonskii, and A. N. Tikhonov, Biokhimiya 69, 1251 (2004).

    Google Scholar 

  14. D. Walker, Photosynth. Res. 34, 387 (1992).

    Article  Google Scholar 

  15. G. H. Lorimer, M. R. Badger, and T. J. Andrews, Biochemistry 15, 529 (1976).

    Article  Google Scholar 

  16. H. W. Heldt, C. J. Chon, and G. H. Lorimer, FEBS Lett. 92, 234 (1978).

    Article  Google Scholar 

  17. F. C. Hartman and M. R. Harpel, Annu. Rev. Biochem. 63, 197 (1994).

    Article  Google Scholar 

  18. F. Machler and J. J. Nosberger, Exp. Bot. 31, 1485 (1980).

    Article  Google Scholar 

  19. K. J. Dietz, G. Link, E. K. Pistorius, and R. Scheibe, Prog. Botany 63, 207 (2002).

    Google Scholar 

  20. R. J. Spreitzer and M. E. Salvucci, Annu. Rev. Plant Biol. 53, 449 (2002).

    Article  Google Scholar 

  21. A. R. Portis, Jr., Photosynth. Res. 75, 11 (2003).

    Article  Google Scholar 

  22. D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry. Fourth Edition. Chapter 20 (2005).

  23. H. W. Heldt, K. Werdan, M. Milovancev, and G. Geller, Biochim. Biophys. Acta. 314, 224 (1973).

    Article  Google Scholar 

  24. B. B. Buchanan, Arch. Biochem. Biophys. 288, 1 (1991).

    Article  Google Scholar 

  25. E. Rabinovich, in Photosynthesis (Inostr. Lit., Moscow, 1959), Vol. 3, Ch. XXXIII [in Russian].

    Google Scholar 

  26. A. Haldrup, P. E. Jensen, C. Lunde, and H. V. Scheller, Trends in Plant Science 6, 301 (2001).

    Article  Google Scholar 

  27. J. F. Allen, Science 299, 1530 (2003).

    Article  ADS  Google Scholar 

  28. A. N. Tikhonov and E. K. Ruuge, Biofizika 20, 1049 (1975).

    Google Scholar 

  29. A. N. Tikhonov, G. B. Khomutov, E. K. Ruuge, and L. A. Blumenfeld, Biochim. Biophys. Acta 637, 321 (1981).

    Article  Google Scholar 

  30. S. B. Ryzhikov and A. N. Tikhonov, Biofizika 33, 642 (1988).

    Google Scholar 

  31. E. A. Vishnyakova, B. V. Trubitsyn, and A. N. Tikhonov, Biofizika 45, 899 (2000).

    Google Scholar 

  32. B. V. Trubitsin, M. D. Mamedov, L. A. Vitukhnovskaya, et al., FEBS Lett. 544, 15 (2003).

    Article  Google Scholar 

  33. B. V. Trubitsin, V. V. Ptushenko, O. A. Koksharova, et al., Biochim. Biophys. Acta 1708, 238 (2005).

    Article  Google Scholar 

  34. H. T. Witt, Q. Rev. Biophys. 4, 365 (1971).

    Article  Google Scholar 

  35. B. Rumberg and U. Siggel, Naturwissenschaften 56, 130 (1969).

    Article  ADS  Google Scholar 

  36. L. A. Blumenfeld and A. N. Tikhonov, Biophysical Thermodynamics of Intracellular Processes. Molecular Machines of the Living Cell (Springer-Verlag, New York, 1994).

    Google Scholar 

  37. D. M. Kramer, C. A. Sacksteder, and J. A. Cruz, Photosynth. Res. 60, 151 (1999).

    Article  Google Scholar 

  38. A. N. Tikhonov, G. B. Khomutov, and E. K. Ruuge, Photobiochem. Photobiophys. 8, 261 (1984).

    Google Scholar 

  39. U. Heber, Photosynthesis Research 73, 223 (2002).

    Article  Google Scholar 

  40. M. Nishimura, T. Ito, and B. Chance, Biochim. Biophys. Acta 59, 177 (1962).

    Article  Google Scholar 

  41. M. D. Brand and M. P. Murphy, Biol. Rev. Camb. Philos. Soc. 62, 141 (1987).

    Google Scholar 

  42. K. Asada, Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Tikhonov.

Additional information

Original Russian Text © A.E. Frolov, A.N. Tikhonov, 2007, published in Biofizika, 2007, Vol. 52, No. 4, pp. 656–666.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, A.E., Tikhonov, A.N. Influence of light-induced changes in stromal and lumenal pH on electron transport kinetics in chloroplasts: Mathematical modeling. BIOPHYSICS 52, 398–405 (2007). https://doi.org/10.1134/S0006350907040070

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350907040070

Key words

Navigation